05234nam 2200625 a 450 991082860040332120240313134451.01-5231-1007-41-118-51704-01-299-18825-71-118-51706-71-118-51705-9(CKB)2670000000327454(EBL)1118513(OCoLC)827208370(MiAaPQ)EBC1118513(DLC) 2013001360(Au-PeEL)EBL1118513(CaPaEBR)ebr10657678(CaONFJC)MIL450075(OCoLC)824087959(FINmELB)ELB178178(EXLCZ)99267000000032745420130110d2013 uy 0engur|||||||||||rdacontentrdamediardacarrierBattery systems engineering /Christopher D. Rahn and Chao-Yang Wang1st ed.Hoboken John Wiley & Sons Inc.20131 online resource (251 p.)Description based upon print version of record.1-119-97950-1 Includes bibliographical references and index.BATTERY SYSTEMS ENGINEERING; Contents; Preface; 1 Introduction; 1.1 Energy Storage Applications; 1.2 The Role of Batteries; 1.3 Battery Systems Engineering; 1.4 A Model-Based Approach; 1.5 Electrochemical Fundamentals; 1.6 Battery Design; 1.7 Objectives of this Book; 2 Electrochemistry; 2.1 Lead-Acid; 2.2 Nickel-Metal Hydride; 2.3 Lithium-Ion; 2.4 Performance Comparison; 2.4.1 Energy Density and Specific Energy; 2.4.2 Charge and Discharge; 2.4.3 Cycle Life; 2.4.4 Temperature Operating Range; 3 Governing Equations; 3.1 Thermodynamics and Faraday's Law; 3.2 Electrode Kinetics3.2.1 The Butler-Volmer Equation 3.2.2 Double-Layer Capacitance; 3.3 Solid Phase of Porous Electrodes; 3.3.1 Intercalate Species Transport; 3.3.2 Conservation of Charge; 3.4 Electrolyte Phase of Porous Electrodes; 3.4.1 Ion Transport; 3.4.2 Conservation of Charge; 3.4.3 Concentrated Solution Theory; 3.5 Cell Voltage; 3.6 Cell Temperature; 3.6.1 Arrhenius Equation; 3.6.2 Conservation of Energy; 3.7 Side Reactions and Aging; Problems; 4 Discretization Methods; 4.1 Analytical Method; 4.1.1 Electrolyte Diffusion; 4.1.2 Coupled Electrolyte-Solid Diffusion in Pb Electrodes4.1.3 Solid-State Diffusion in Li-Ion and Ni-MH Particles 4.2 Pad Approximation Method; 4.2.1 Solid-State Diffusion in Li-Ion Particles; 4.3 Integral Method Approximation; 4.3.1 Electrolyte Diffusion; 4.3.2 Solid-State Diffusion in Li-Ion and Ni-MH Particles; 4.4 Ritz Method; 4.4.1 Electrolyte Diffusion in a Single Domain; 4.4.2 Electrolyte Diffusion in Coupled Domains; 4.4.3 Coupled Electrolyte-Solid Diffusion in Pb Electrodes; 4.5 Finite-Element Method; 4.5.1 Electrolyte Diffusion; 4.5.2 Coupled Electrolyte-Solid Diffusion in Li-Ion Electrodes; 4.6 Finite-Difference Method4.6.1 Electrolyte Diffusion 4.6.2 Nonlinear Coupled Electrolyte-Solid Diffusion in Pb Electrodes; 4.7 System Identification in the Frequency Domain; 4.7.1 System Model; 4.7.2 Least-Squares Optimization Problem; 4.7.3 Optimization Approach; 4.7.4 Multiple Outputs; 4.7.5 System Identification Toolbox; 4.7.6 Experimental Data; Problems; 5 System Response; 5.1 Time Response; 5.1.1 Constant Charge/Discharge Current; 5.1.2 DST Cycle Response of the Pb-Acid Electrode; 5.2 Frequency Response; 5.2.1 Electrochemical Impedance Spectroscopy; 5.2.2 Discretization Efficiency; 5.3 Model Order Reduction5.3.1 Truncation Approach 5.3.2 Grouping Approach; 5.3.3 Frequency-Response Curve Fitting; 5.3.4 Performance Comparison; Problems; 6 Battery System Models; 6.1 Lead-Acid Battery Model; 6.1.1 Governing Equations; 6.1.2 Discretization using the Ritz Method; 6.1.3 Numerical Convergence; 6.1.4 Simulation Results; 6.2 Lithium-Ion Battery Model; 6.2.1 Conservation of Species; 6.2.2 Conservation of Charge; 6.2.3 Reaction Kinetics; 6.2.4 Cell Voltage; 6.2.5 Linearization; 6.2.6 Impedance Solution; 6.2.7 FEM Electrolyte Diffusion; 6.2.8 Overall System Transfer Function6.2.9 Time-Domain Model and Simulation ResultsA complete all-in-one reference on the important interdisciplinary topic of Battery Systems Engineering Focusing on the interdisciplinary area of battery systems engineering, this book provides the background, models, solution techniques, and systems theory that are necessary for the development of advanced battery management systems. It covers the topic from the perspective of basic electrochemistry as well as systems engineering topics and provides a basis for battery modeling for system engineering of electric and hybrid electric vehicle platforms.Electric batteriesDesign and constructionElectric batteriesDesign and construction.621.31/242Rahn Christopher D(Christopher David)521905Wang Zhaoyang1646871MiAaPQMiAaPQMiAaPQBOOK9910828600403321Battery systems engineering3994105UNINA