08516nam 2200661 a 450 991082847400332120240410172231.01-61728-735-0(CKB)2670000000176365(EBL)3020914(SSID)ssj0000687469(PQKBManifestationID)12328315(PQKBTitleCode)TC0000687469(PQKBWorkID)10755781(PQKB)10530603(MiAaPQ)EBC3020914(Au-PeEL)EBL3020914(CaPaEBR)ebr10681052(OCoLC)785911195(EXLCZ)99267000000017636520100511d2011 uy 0engur|n|---|||||txtccrBolometers[electronic resource] theory, types and applications /Torrence M. Walcott, editor1st ed.New York Nova Science Publishersc20111 online resource (213 p.)Physics research and technologyDescription based upon print version of record.1-61728-289-8 Includes bibliographical references and index.Intro -- BOLOMETERS: THEORY, TYPES AND APPLICATIONS -- BOLOMETERS: THEORY, TYPES AND APPLICATIONS -- CONTENTS -- PREFACE -- Chapter 1 THIN FILM MICRO-BOLOMETERS WITH SI-GE THERMO-SENSING FILMS DEPOSITED FROM PLASMA DISCHARGE -- ABSTRACT -- 1. INTRODUCTION -- 2. PRINCIPLE OF PERFORMANCE -- 2.1. Bolometer Operation -- 2.2. Characteristics of the Bolometer -- a) Responsivity -- b) Noise -- c) Detectivity -- d) Thermal Response Time -- 3. REQUIREMENTS FOR DESIGN AND MATERIALS -- 3.1. Properties of Bolometer Materials -- a) Temperature Coefficient of Resistance -- b) Thermal Conductance -- c) Thermal Capacitance -- 4. SILICON-GERMANIUM AS THERMO-SENSING MATERIAL DEPOSITED BY PLASMA -- 4.1. Different Thermo Sensing Materials -- 4.2. Study of Silicon-Germanium Thin Films Deposited by Plasma -- a) Deposition rate (Vd) -- b) Composition -- c) Electrical Properties -- 4.3. Study of Silicon-Germanium-Boron Alloys as Thermo-Sensing Films -- a) Samples Preparation -- b) Results of Films Characterization -- 5. MODELING -- 5.1. Introduction -- 5.2. 2D Modeling -- 5.3. Results of Modeling -- 5.4. Experimental Results Relevant to Modeling -- 6. MICRO-BOLOMETERS CONFIGURATIONS AND FABRICATION -- 6.1. Micro-Bolometer Configurations -- 7. CHARACTERIZATION OF MICRO-BOLOMETERS -- 7.1. Characterization of Temperature Dependence of Conductivity in the Films and Estimation of Thermal Coefficient of Resistance, TCR -- 7.2. I(U) Measurements in Dark and under Infrared (IR) Radiation -- 7.3. Calculation of Responsivity -- 7.4. Noise Measurements -- 7.5. Calculation of Detectivity -- 7.6. Thermal Response Time Characterization -- 7.7. Temperature Dependence of Thermal Resistance and Calibration Curve -- 8. MICRO-BOLOMETERS IN THZ REGION -- 8.1. Experimental Details -- 8.2 Results -- 9. ALTERNATIVE (NON-RESISTIVE) MICROBOLOMETERS -- 10. COMMERCIALLY AVAILABLE DEVICES.11. SUMMARY -- ACKNOWLEDGMENT -- REFERENCES -- Section 2 -- Section 3 -- Section 4 -- Section 5 -- Section 6 -- Section 7 -- Section 8 -- Section 9 -- Section 10 -- Chapter 2 INVESTIGATIONS OF PROPERTIES OF HIGH TEMPERATURE SUPERCONDUCTING BOLOMETERS -- ABSTRACT -- 1. INTRODUCTION -- 2. BOLOMETER NOISE THEORY AND MODELING -- 2.1. Principle of Bolometer Operation and Theory of Noise in Bolometers -- 2.2. Bolometer Noise Modeling -- 2.2.1. Passive Operational Modes with Constant Current Bias (CCM) and Constant Voltage Bias (CVM) -- 2.2.2. Operational Mode of HTSC Bolometer with Active Negative Electrothermal Feedback (АNETF) -- 3. EXCESS 1/F NOISE IN HTSC FILMS FOR BOLOMETERS -- 4. RESULTS OF EXPERIMENTAL NOISE RESEARCH OF HTSC BOLOMETERS -- 4.1. Noise of Antenna-Couple HTSC Microbolometers -- 4.2. Noise of HTSC Bolometers Based on Silicon Micromachining Technology -- CONCLUSION -- REFERENCES -- Chapter 3 OPERATING UNCOOLED RESISTIVE BOLOMETERS IN A CLOSED-LOOP MODE -- ABSTRACT -- 1. INTRODUCTION -- Notation Conventions -- Bolometer Principle and Model -- 2. CLOSED-LOOP OPERATION FOR BOLOMETERS -- 2.1. Advantages of Closed-Loop Operation for Bolometers -- 2.1.1. Linearization and Wider Dynamic Range -- 2.1.2. Operation around a Working Point -- 2.1.3. Extended Bandwidth -- 2.1.4. Noise Performance -- 2.2. Implementations of the Closed-Loop Configurations -- 2.2.1. Electrical Substitution or Electric Equivalence Principle -- 2.2.2. Electrical Heat Feedback for Resistive Bolometers -- 2.2.2.1. Type 1 -- 2.2.2.2.Type 2 -- 2.2.2.3. Type 3 -- 2.2.2.4.Comparison -- 3. TOWARD SMART BOLOMETERS -- CONCLUSION -- REFERENCES -- Chapter 4 A SECURITY CAMERA AS AN EXAMPLE FOR A THZ IMAGING APPLICATION -- ABSTRACT -- 1. INTRODUCTION -- 2. THZ CAMERA -- 3. WORKING PRINCIPLE OF TRANSITION EDGE SENSORS -- 4. OPERATION OF TRANSITION EDGE SENSORS -- 4.1. Cooling.4.2. Radiation Coupling -- 4.3. Thermal Considerations -- 4.4. Mapping Speed and Array Size -- 4.5. Scalability -- 5. TRANSITION EDGE SENSORS FOR A SECURITY CAMERA -- 5.1. Fabrication of Transition Edge Sensors on Silicon Nitride Membranes -- 5.2. Optical System -- 5.3. Scanning System -- 5.4. Amplification Electronics and Data Processing -- 5.5. Camera Performance -- CONCLUSION -- REFERENCES -- Chapter 5 NOISE PROPERTIES OF HIGH-TC SUPERCONDUCTING TRANSITION EDGE BOLOMETERS WITH ELECTROTHERMAL FEEDBACK -- ABSTRACT -- INTRODUCTION -- 2. THEORY -- 2.1. Modes of HTSС Bolometer Operation -- 2.2. Characteristics of HTSС Bolometers in Passive CCM and CVM Modes -- 2.3. Characteristics of HTSС Bolometers in Active ANETF Mode -- 3. NUMERICAL AND EXPERIMENTAL MODELLING -- 3.1. Comparative Numerical Modeling in Passive CCM and CVM Modes -- 3.2. Comparative Numerical and Experimental Modeling in CCM and ANETF Modes -- CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 6 COMPARATIVE INVESTIGATION OF PASSIVE AND ACTIVE OPERATING MODES FOR HIGH-TC SUPERCONDUCTING TRANSITION EDGE BOLOMETERS WITH ELECTROTHERMAL FEEDBACK FOR INFRARED WAVES -- ABSTRACT -- 1. INTRODUCTION -- 2. BOLOMETER THEORY -- 2.1. Modes of HTSC Bolometer Operation -- 2.2. Characteristics of HTSC Bolometers in CCM and CVM -- 2.3. Characteristics of HTSC Bolometers in ANETF Mode -- 3. SAMPLES -- 4. NUMERICAL AND EXPERIMENTAL MODELING -- 4.1. Comparative Numerical Modeling in Passive CCM and CVM Modes -- 4.2. Comparative Numerical and Experimental Modeling in CCM and ANETF Modes -- 4.3. Temperature Stabilization of Bolometer Operating Point -- CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 7 EXPERIMENTAL MODELLING ACTIVE STRONG ELECTROTHERMAL FEEDBACK MODE FOR HIGH-TC SUPERCONDUCTING BOLOMETER ON SILICON NITRIDE MEMBRANE -- ABSTRACT -- 1. INTRODUCTION -- 2. BOLOMETER THEORY.3. EXPERIMENTAL TECHNIQUE AND RESULTS -- CONCLUSION -- REFERENCES -- Chapter 8 YBCO FILMS ON SRTIO3 SUBSTRATES WITH RECORDLY LOW 1/F NOISE FOR BOLOMETER APPLICATIONS -- ABSTRACT -- 1. INTRODUCTION -- 2. NOISE EQUIVALENT POWER AND NOISE VOLTAGE OF HTSC BOLOMETER -- 3. SAMPLES AND EXPERIMENTAL TECHNIQUE -- 4. MAIN RESULTS OBTAINED AND DISCUSSION -- 5. ESTIMATION OF BOLOMETERS -- CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 9 ABSOLUTE HIGH-TC SUPERCONDUCTING RADIOMETER WITH ELECTRICAL-SUBSTITUTION FOR X-RAYS MEASUREMENTS -- ABSTRACT -- 1. INTRODUCTION -- 2. DESIGN, PRINCIPLE AND CHARACTERISTICS OF RADIOMETER -- 2.1. Design and Principle of Operation -- 2.2. Calculated Characteristics -- 3. INTERACTION OF THE RADIOMETER WITH RADIATION -- Effect of Radiometer Interaction with Radiation on Accuracy of Measurements -- Other Factors Having Influence on Efficiency of Radiometer Measurements -- 4. CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- INDEX -- Blank Page.Physics research and technology.BolometerBolometerIndustrial applicationsDetectorsElectromagnetic devicesTerahertz technologyBolometer.BolometerIndustrial applications.Detectors.Electromagnetic devices.Terahertz technology.539.7/7Walcott Torrence M1621473MiAaPQMiAaPQMiAaPQBOOK9910828474003321Bolometers3954756UNINA