06664nam 22018855 450 991078994260332120190708092533.01-280-49431-X97866135895451-4008-4314-610.1515/9781400843145(CKB)2670000000174777(EBL)887204(OCoLC)852755904(SSID)ssj0000878101(PQKBManifestationID)11483193(PQKBTitleCode)TC0000878101(PQKBWorkID)10814026(PQKB)11532287(OCoLC)794489159(OCoLC)1085649428(MdBmJHUP)muse41487(DE-B1597)447585(OCoLC)1004872046(OCoLC)1054880449(OCoLC)979780174(OCoLC)999372118(DE-B1597)9781400843145(MiAaPQ)EBC887204(EXLCZ)99267000000017477720190708d2012 fg engurcn|||||||||txtrdacontentcrdamediacrrdacarrierThe War for Afghanistan: A Very Brief History From Afghanistan: A Cultural and Political History /Thomas BarfieldCourse BookPrinceton, NJ : Princeton University Press, [2012]©20121 online resource (62 pages)Princeton Shorts"The war for Afghanistan : a very brief history comprises chapter 5 from Afghanistan : a cultural and political history, by Thomas Barfield. Copyright 2010 by Princeton University Press"--Title page verso.Includes bibliographical references (pages 57-58). Frontmatter -- Afghanistan Enters the Twenty-first Century -- About the Author -- Related TitlesWhen it invaded Afghanistan in 2001, the United States sought to do something previous foreign powers had never attempted: to create an Afghani state where none existed. More than a decade on, the new regime in Kabul remains plagued by illegitimacy and ineffectiveness. What happened? As Thomas Barfield shows, the history of previous efforts to build governments in Afghanistan does much to explain the difficulties besetting this newest experiment. Princeton Shorts are brief selections taken from influential Princeton University Press books and produced exclusively in ebook format. Providing unmatched insight into important contemporary issues or timeless passages from classic works of the past, Princeton Shorts enable you to be an instant expert in a world where information is everywhere but quality is at a premium.Princeton ShortsIslam and politicsAfghanistanHistoryAfghanistanSocial conditionsAfghanistanHistoryAfghanistanPolitics and governmentAbdul Ahad Karzai.Abdul Haq (Afghan leader).Abdul Rashid Dostum.Abuse of power.Afghan refugees.Afghanistan.Afghanistanism.Al-Qaeda.Amanullah Khan.Appeasement.Assassination.Ba'athist Iraq.Babrak Karmal.Barakzai.Carpetbagger.Center of government.Central Asia.Colonialism.Consent of the governed.Consultation (Texas).Counter-insurgency.Counterforce.Decentralization.Demographics of Afghanistan.Durrani Empire.Electoral fraud.Estado Novo (Portugal).Failed state.Federally Administered Tribal Areas.First Anglo-Afghan War.George W. Bush.Gulbuddin Hekmatyar.Hafizullah Amin.Hamid Karzai.Head of government.Imperialism.Insurgency.Internally displaced person.International Security Assistance Force.International community.Islamic Emirate of Afghanistan.Islamic extremism.Ismail Khan.Jalaluddin Haqqani.Jirga.Kabul.Left-wing politics.Loya jirga.Mass mobilization.MassResistance.Microstate.Military dictatorship.Military occupation.Mohammed Omar.Mohammed Zahir Shah.Muhammadzai (Hashtnagar).Mujahideen.Musahiban.NATO.Najibullah (militant leader).Name recognition.Nation-building.Neocolonialism.Nuristanis.Pakistan.Pashtuns.People's Democratic Party of Afghanistan.Politician.Power politics.President of Afghanistan.Prime Minister of Canada.Provincial Reconstruction Team.Provisional government.Puppet state.Racism.Reactionary.Refugee.Resistance movement.Sadozai (Pashtun tribe).Second Anglo-Afghan War.Sovereignty.Soviet Union.Soviet withdrawal from Afghanistan.Strongman (politics).Subsidy.Tajiks.Taliban insurgency.Taliban.Tax.Tehrik-i-Taliban Pakistan.Territorial integrity.The Iraqis (party).Treaty of Gandamak.United States invasion of Afghanistan.War crime.War in Afghanistan (2001–14).War in Afghanistan (2015–present).War of succession.Warfare.Zhou Enlai.Islam and politicsHistory.958.1Barfield Thomas, 1530469DE-B1597DE-B1597BOOK9910789942603321The War for Afghanistan: A Very Brief History3775539UNINA14832nam 2201309 450 991082800060332120230125183122.01-60650-171-210.5643/9781606501719(CKB)3710000000329615(EBL)1911737(SSID)ssj0001441902(PQKBManifestationID)11804073(PQKBTitleCode)TC0001441902(PQKBWorkID)11419759(PQKB)11670880(OCoLC)900732840(CaBNvSL)swl00404624(MiAaPQ)EBC1911737(Au-PeEL)EBL1911737(CaPaEBR)ebr11007943(CaONFJC)MIL688128(OCoLC)899728211(EXLCZ)99371000000032961520150124d2015 fy 0engur|n|---|||||txtrdacontentcrdamediacrrdacarrierTuning and control loop performance /Gregory K. McMillanFourth edition.New York, [New York] (222 East 46th Street, New York, NY 10017) :Momentum Press,2015.1 online resource (584 pages)Manufacturing and engineering collectionDescription based upon print version of record.1-60650-170-4 Includes bibliographical references (pages 523-527) and index.1. Fundamentals -- 1.1 Introduction -- 1.1.1 Perspective -- 1.1.2 Overview -- 1.1.3 Recommendations -- 1.2 PID controller -- 1.2.1 Proportional mode -- 1.2.2 Integral mode -- 1.2.3 Derivative mode -- 1.2.4 ARW and output limits -- 1.2.5 Control action and valve action -- 1.2.6 Operating modes -- 1.3 Loop dynamics -- 1.3.1 Types of process responses -- 1.3.2 Dead times and time constants -- 1.3.3 Open loop self-regulating and integrating process gains -- 1.3.4 Deadband, resolution, and threshold sensitivity -- 1.4 Typical mode settings -- 1.5 Typical tuning methods -- 1.5.1 Lambda tuning for self-regulating processes -- 1.5.2 Lambda tuning for integrating processes -- 1.5.3 IMC tuning for self-regulating processes -- 1.5.4 IMC tuning for integrating processes -- 1.5.5 Skogestad internal model control tuning for self-regulating processes -- 1.5.6 SIMC tuning for integrating processes -- 1.5.7 Traditional open loop tuning -- 1.5.8 Modified Ziegler-Nichols reaction curve tuning -- 1.5.9 Modified Ziegler-Nichols ultimate oscillation tuning -- 1.5.10 Quarter amplitude oscillation tuning -- 1.5.11 SCM tuning for self-regulating processes -- 1.5.12 SCM tuning for integrating processes -- 1.5.13 SCM tuning for runaway processes -- 1.5.14 Maximizing absorption of variability tuning for surge tank level -- 1.6 Test results -- 1.6.1 Performance of tuning settings on dead time dominant processes -- 1.6.2 Performance of tuning settings on near-integrating processes -- 1.6.3 Performance of tuning settings on true integrating processes -- 1.6.4 Performance of tuning settings on runaway processes -- 1.6.5 Slow oscillations from low PID gain in integrating and runaway processes -- 1.6.6 Performance of tuning methods on various processes -- Key points -- 2. Unified methodology -- 2.1 Introduction -- 2.1.1 Perspective -- 2.1.2 Overview -- 2.1.3 Recommendations -- 2.2 PID features -- 2.2.1 PID form -- 2.2.2 External reset feedback -- 2.2.3 PID structure -- 2.2.4 Split range -- 2.2.5 Signal characterization -- 2.2.6 Feedforward -- 2.2.7 Decoupling -- 2.2.8 Output tracking and remote output -- 2.2.9 Setpoint filter, lead-lag, and rate limits -- 2.2.10 Enhanced PID for wireless and analyzers -- 2.3 Automation system difficulties -- 2.3.1 Open loop gain problems -- 2.3.2 Time constant problems -- 2.3.3 Dead time problems -- 2.3.4 Limit cycle problems -- 2.3.5 Noise problems -- 2.3.6 Accuracy and precision problems -- 2.4 Process objectives -- 2.4.1 Maximize turndown -- 2.4.2 Maximize safety and environmental protection -- 2.4.3 Minimize product variability -- 2.4.4 Maximize process efficiency and capacity -- 2.5 Step-by-step solutions -- 2.6 Test results -- Key points -- 3. Performance criteria -- 3.1 Introduction -- 3.1.1 Perspective -- 3.1.2 Overview -- 3.1.3 Recommendations -- 3.2 Disturbance response metrics -- 3.2.1 Accumulated error -- 3.2.2 Peak error -- 3.2.3 Disturbance lag -- 3.3 Setpoint response metrics -- 3.3.1 Rise time -- 3.3.2 Overshoot and undershoot -- Key points -- 4. Effect of process dynamics -- 4.1 Introduction -- 4.1.1 Perspective -- 4.1.2 Overview -- 4.1.3 Recommendations -- 4.2 Effect of mechanical design -- 4.2.1 Equipment and piping dynamics -- 4.2.2 Common equipment and piping design mistakes -- 4.3 Estimation of total dead time -- 4.4 Estimation of open loop gain -- 4.5 Major types of process responses -- 4.5.1 Self-regulating processes -- 4.5.2 Integrating processes -- 4.5.3 Runaway processes -- 4.6 Examples -- 4.6.1 Waste treatment pH loops (self-regulating process) -- 4.6.2 Boiler feedwater flow loop (self-regulating process) -- 4.6.3 Boiler drum level loop (integrating process) -- 4.6.4 Furnace pressure loop (near-integrating process) -- 4.6.5 Exothermic reactor cascade temperature loop (runaway process) -- 4.6.6 Biological reactor biomass concentration loop (runaway process) -- Key points -- 5. Effect of controller dynamics -- 5.1 Introduction -- 5.1.1 Perspective -- 5.1.2 Overview -- 5.1.3 Recommendations -- 5.2 Execution rate and filter time -- 5.2.1 First effect via equation for integrated error -- 5.2.2 Second effect via equations for implied dead time -- 5.3 Smart reset action -- 5.4 Diagnosis of tuning problems -- 5.5 Furnace pressure loop example (near-integrating) -- 5.6 Test results -- Key points -- 6. Effect of measurement dynamics -- 6.1 Introduction -- 6.1.1 Perspective -- 6.1.2 Overview -- 6.1.3 Recommendations -- 6.2 Wireless update rate and transmitter damping -- 6.2.1 First effect via equation for integrated error -- 6.2.2 Second effect via equations for implied dead time -- 6.3 Analyzers -- 6.4 Sensor lags and delays -- 6.5 Noise and repeatability -- 6.6 Threshold sensitivity and resolution limits -- 6.7 Rangeability (turndown) -- 6.8 Runaway processes -- 6.9 Accuracy, precision, and drift -- 6.10 Attenuation and deception -- 6.11 Examples -- 6.11.1 Waste treatment pH loop (self-regulating process) -- 6.11.2 Boiler feedwater flow loop (self-regulating process) -- 6.11.3 Boiler drum level loop (integrating process) -- 6.11.4 Furnace pressure loop (near-integrating process) -- 6.11.5 Exothermic reactor cascade temperature loop (runaway process) -- 6.11.6 Biological reactor biomass concentration loop (runaway process) -- 6.12 Test results -- Key points -- 7. Effect of valve and variable frequency drive dynamics -- 7.1 Introduction -- 7.1.1 Perspective -- 7.1.2 Overview -- 7.1.3 Recommendations -- 7.2 Valve positioners and accessories -- 7.2.1 Pneumatic positioners -- 7.2.2 Digital positioners -- 7.2.3 Current to pneumatic (I/P) transducers -- 7.2.4 Solenoid valves -- 7.2.5 Volume boosters -- 7.3 Actuators, shafts, and stems -- 7.3.1 Diaphragm actuators -- 7.3.2 Piston actuators -- 7.3.3 Linkages and connections -- 7.4 VFD system design -- 7.4.1 Pulse width modulation -- 7.4.2 Cable problems -- 7.4.3 Bearing problems -- 7.4.4 Speed slip -- 7.4.5 Motor requirements -- 7.4.6 Drive controls -- 7.5 Dynamic response -- 7.5.1 Control valve response -- 7.5.2 VFD response -- 7.5.3 Dead time approximation -- 7.5.4 Deadband and resolution -- 7.5.5 When is a valve or VFD too slow? -- 7.5.6 Limit cycles -- 7.6 Installed flow characteristics and rangeability -- 7.6.1 Valve flow characteristics -- 7.6.2 Valve rangeability -- 7.6.3 VFD flow characteristics -- 7.6.4 VFD rangeability -- 7.7 Best practices -- 7.7.1 Control valve design specifications -- 7.7.2 VFD design specifications -- 7.8 Test results -- Key points -- 8. Effect of disturbances -- 8.1 Introduction -- 8.1.1 Perspective -- 8.1.2 Overview -- 8.1.3 Recommendations -- 8.2 Disturbance dynamics -- 8.2.1 Load time constants -- 8.2.2 Load rate limit -- 8.2.3 Disturbance dead time -- 8.2.4 Disturbance oscillations -- 8.3 Disturbance location -- 8.4 Disturbance troubleshooting -- 8.4.1 Sources of fast oscillations -- 8.4.2 Sources of slow oscillations -- 8.5 Disturbance mitigation -- 8.6 Test results -- Key points -- 9. Effect of nonlinearities -- 9.1 Introduction -- 9.1.1 Perspective -- 9.1.2 Overview -- 9.1.3 Recommendations -- 9.2 Variable gain -- 9.2.1 Cascade control -- 9.2.2 Reversals of process sign -- 9.2.3 Signal characterization -- 9.2.4 Gain scheduling -- 9.2.5 Adaptive control -- 9.2.6 Gain margin -- 9.3 Variable dead time -- 9.4 Variable time constant -- 9.5 Inverse response -- 9.6 Test results -- Key points -- 10. Effect of interactions -- 10.1 Introduction -- 10.1.1 Perspective -- 10.1.2 Overview -- 10.1.3 Recommendations -- 10.2 Pairing -- 10.2.1 Relative gain array -- 10.2.2 Distillation column example -- 10.2.3 Static mixer example -- 10.2.4 Hidden control loops -- 10.2.5 Relative gains less than zero -- 10.2.6 Relative gains from zero to one -- 10.2.7 Relative gains greater than one -- 10.2.8 Model predictive control -- 10.3 Decoupling -- 10.4 Directional move suppression -- 10.5 Tuning -- 10.6 Test results -- Key points -- 11. Cascade control -- 11.1 Introduction -- 11.1.1 Perspective -- 11.1.2 Overview -- 11.1.3 Recommendations -- 11.2 Configuration and tuning -- 11.3 Process control benefits -- 11.4 Process knowledge benefits -- 11.5 Watch-outs -- 11.6 Test results -- Key points -- 12. Advanced regulatory control -- 12.1 Introduction -- 12.1.1 Perspective -- 12.1.2 Overview -- 12.1.3 Recommendations -- 12.2 Feedforward control -- 12.2.1 Opportunities -- 12.2.2 Watch-outs -- 12.3 Intelligent output action -- 12.3.1 Opportunities -- 12.3.2 Watch-outs -- 12.4 Intelligent integral action -- 12.4.1 Opportunities -- 12.4.2 Watch-outs -- 12.5 Dead time compensation -- 12.5.1 Opportunities -- 12.5.2 Watch-outs -- 12.6 Valve position control -- 12.6.1 Opportunities -- 12.6.2 Watch-outs -- 12.7 Override control -- 12.7.1 Opportunities -- 12.7.2 Watch-outs -- 12.8 Test results -- Key points -- 13. Process control improvement -- 13.1 Introduction -- 13.1.1 Perspective -- 13.1.2 Overview -- 13.1.3 Recommendations -- 13.2 Unit operation metrics -- 13.3 Opportunities -- 13.3.1 Variability -- 13.3.2 Increasing capacity and efficiency -- 13.3.3 Effective use of models -- 13.3.4 Sizing and assessment -- 13.4 Key questions -- Key points -- 14. Auto tuners and adaptive control -- 14.1 Introduction -- 14.1.1 Perspective -- 14.1.2 Overview -- 14.1.3 Recommendations -- 14.2 Methodology -- Key points -- 15. Batch optimization -- 15.1 Introduction -- 15.1.1 Perspective -- 15.1.2 Overview -- 15.1.3 Recommendations -- 15.2 Cycle time -- 15.3 Profile -- 15.4 End point -- Key points -- Appendix A. Automation system performance top 10 concepts -- Appendix B. Basics of PID controllers -- Appendix C. Controller performance -- Appendix D. Discussion -- Appendix E. Enhanced PID for wireless and analyzer applications -- Appendix F. First principle process relationships -- Appendix G. Gas pressure dynamics -- Appendix H. Convective heat transfer coefficients -- Appendix I. Interactive to noninteractive time constant conversion -- Appendix. Jacket and coil temperature control -- Appendix K. PID forms and conversion of tuning settings -- Appendix L. Liquid mixing dynamics -- Appendix M. Measurement speed requirements for SIS -- References -- Bibliography -- About the author -- Index.The proportional-integral-derivative (PID) controller is the heart of every control system in the process industry. Given the proper setup and tuning, the PID has proven to have the capability and flexibility needed to meet nearly all of industry's basic control requirements. However, the information to support the best use of these features has fallen behind the progress of improved functionality. Additionally, there is considerable disagreement on the tuning rules that largely stems from a misunderstanding of how tuning rules have evolved and the lack of recognition of the effect of automation system dynamics and the incredible spectrum of process responses, disturbances, and performance objectives. This book provides the knowledge to eliminate the misunderstandings, realize the difference between theoretical and industrial application of PID control, address practical difficulties, improve field automation system design, use the latest PID features, and ultimately get the best tuning settings that enables the PID to achieve its full potential.Manufacturing and engineering collection.Process controlFeedback control systemsadaptive controladvanced regulatory controlanalyzer responseauto tunerautomation systembatch optimizationbioreactor controlcascade controlcompressor controlcontrol loop performancecontrol valve responseexternal reset feedbackfeedforward controlinverse responselambda tuninglevel controlmeasurement responsepH controlPID controlPID execution ratePID filterPID formPID structurePID tuningpressure controlprocess controlprocess disturbancesprocess dynamicsprocess interactionprocess metricsprocess nonlinearityprocess performanceprocess responseproportional-integral-derivative controllerreactor controlrunaway reactiontemperature controlvalve deadbandvalve position controlvalve resolutionvariable frequency drive responsewireless controlwireless responseProcess control.Feedback control systems.629.83McMillan Gregory K.1946-,1679213MiAaPQMiAaPQMiAaPQBOOK9910828000603321Tuning and control loop performance4047290UNINA04792nam 22006135 450 991029974160332120200702052215.01-4471-6338-910.1007/978-1-4471-6338-1(CKB)3710000000088742(EBL)1697643(OCoLC)881165891(SSID)ssj0001186842(PQKBManifestationID)11661868(PQKBTitleCode)TC0001186842(PQKBWorkID)11240423(PQKB)10839434(MiAaPQ)EBC1697643(DE-He213)978-1-4471-6338-1(PPN)176750851(EXLCZ)99371000000008874220140213d2014 u| 0engur|n|---|||||txtccrAn Anthology of Theories and Models of Design Philosophy, Approaches and Empirical Explorations /edited by Amaresh Chakrabarti, Lucienne T. M. Blessing1st ed. 2014.London :Springer London :Imprint: Springer,2014.1 online resource (454 p.)Description based upon print version of record.1-4471-6337-0 Includes bibliographical references at the end of each chapters and index.Theories and Models of Design: A Summary of Findings -- Design Theories, Models and Their Testing On the Scientific Status of Design Research -- A Structure for Design Theory -- Motive of Design: Roles of Pre- and Post-Design in Highly Advanced Products -- What the Design Theory of Social Cyberphysical Systems must Describe, Explain and Predict -- Models of Design -- Perceiving design as modelling: A cybernetic systems perspective -- The Contact and Channel Approach (C&C²-A): Relating a System’s Physical Structure to its Functionality -- Domain Theory, its Models and Concepts -- Engineering Design: Role of Theory, Models, and Methods -- 10 Years of C-K Theory: A Survey on the Academic and Industrial Impacts of a Design Theory -- Designing the Inventive Way in the Innovation Era -- The Function-Behaviour-Structure Ontology of Design -- The Aristotelian Proto-theory of Design -- Perspectives on Design Models and Theories and Development of an Extended – Integrated Model of Designing -- Modelling Products and Product Development Based on Characteristics and Properties -- A Theoretical Approach to Intuition in Design -- Re-Visiting Design as an Information Processing Activity -- Constraints and conditions: Drivers for Design Processes -- Theories, Models, Programs and Tools of Design: Views from Artificial Intelligence, Cognitive Science and Human-Centered Computing -- Modeling the Role of Sketching in Design Idea Generation.While investigations into both theories and models has remained a major strand of engineering design research, current literature sorely lacks a reference book that provides a comprehensive and up-to-date anthology of theories and models, and their philosophical and empirical underpinnings; An Anthology of Theories and Models of Design fills this gap. The text collects the expert views of an international authorship, covering: · significant theories in engineering design, including CK theory, domain theory, and the theory of technical systems; · current models of design, from a function behavior structure model to an integrated model; · important empirical research findings from studies into design; and · philosophical underpinnings of design itself. For educators and researchers in engineering design, An Anthology of Theories and Models of Design gives access to in-depth coverage of theoretical and empirical developments in this area; for practitioners, the book will provide exposure to theoretical and empirical foundations to methods and tools that are currently practiced as well as those in the process of development.Engineering designPhilosophyEngineering Designhttps://scigraph.springernature.com/ontologies/product-market-codes/T17020Philosophy of Technologyhttps://scigraph.springernature.com/ontologies/product-market-codes/E34050Engineering design.Philosophy.Engineering Design.Philosophy of Technology.601620620.0042745.401Chakrabarti Amareshedthttp://id.loc.gov/vocabulary/relators/edtBlessing Lucienne T. Medthttp://id.loc.gov/vocabulary/relators/edtBOOK9910299741603321An Anthology of Theories and Models of Design2075331UNINA