06235nam 22007692 450 991082795350332120151005020621.01-107-22467-51-283-34235-91-139-16026-597866133423551-139-15465-61-139-16126-11-139-15569-51-139-15744-21-139-15921-61-139-01496-X(CKB)2550000000061330(EBL)807153(SSID)ssj0000555225(PQKBManifestationID)11336297(PQKBTitleCode)TC0000555225(PQKBWorkID)10533522(PQKB)11028649(UkCbUP)CR9781139014960(MiAaPQ)EBC807153(Au-PeEL)EBL807153(CaPaEBR)ebr10514175(CaONFJC)MIL334235(OCoLC)773039086(PPN)261330853(EXLCZ)99255000000006133020110214d2012|||| uy| 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierNonlinear transistor model parameter extraction techniques /edited by Matthias Rudolph, Christian Fager, David E. Root[electronic resource]Cambridge :Cambridge University Press,2012.1 online resource (xiv, 352 pages) digital, PDF file(s)The Cambridge RF and microwave engineering seriesTitle from publisher's bibliographic system (viewed on 05 Oct 2015).0-521-76210-3 Includes bibliographical references and index.Cover; Nonlinear Transistor Model Parameter Extraction Techniques; The Cambridge RF and Microwave Engineering Series; Title; Copyright; Contents; List of contributors; Preface; 1 Introduction; 1.1 Model extraction challenges; 1.1.1 Accuracy; 1.1.1.1 Circuit application; 1.1.1.2 Measurement uncertainty; 1.1.1.3 Process variations; 1.1.2 Numerical convergence; 1.1.2.1 Breakdown; 1.1.2.2 Self-heating; 1.1.3 Choice of the modeling transistor; 1.2 Model extraction workflow; References; 2 DC and thermal modeling: III--V FETs and HBTs; 2.1 Introduction; 2.2 Basic DC characteristics2.3 FET DC parameters and modeling2.4 HBT DC parameters and modeling; 2.5 Process control monitoring; 2.6 Thermal modeling overview; 2.7 Physics-based thermal scaling model for HBTs; 2.8 Measurement-based thermal model for FETs; 2.9 Transistor reliability evaluation; Acknowledgments; References; 3 Extrinsic parameter and parasitic elements in III--V HBT and HEMT modeling; 3.1 Introduction; 3.2 Test structures with calibration and de-embedding; 3.3 Methods for extrinsic parameter extraction used in HBTs; 3.3.1 Equivalent circuit topology3.3.2 Physical description of contact resistances and overlap capacitances3.3.3 Extrinsic resistance and inductance extraction; 3.4 Methods for extrinsic parameter extraction used in HEMTs; 3.4.1 Cold FET technique; 3.4.2 Unbiased technique; 3.4.3 GaN HEMTs exceptions; 3.5 Scaling for multicell arrays; References; 4 Uncertainties in small-signal equivalent circuit modeling; 4.1 Introduction; 4.1.1 Sources of uncertainty in modeling; 4.1.2 Measurement uncertainty; 4.2 Uncertainties in direct extraction methods; 4.2.1 Simple direct extraction example; 4.2.1.1 Example circuit and measurements4.2.1.2 Uncertainty analysis4.2.1.3 Parameter estimation; 4.2.1.4 Parameter correlations; 4.2.2 Results using transistor measurements; 4.2.2.1 Uncertainty contributions; 4.2.2.2 Intrinsic model parameter sensitivities; 4.2.2.3 Intrinsic model parameter uncertainties; 4.2.2.4 Multibias extraction results; 4.3 Optimizer-based estimation techniques; 4.3.1 Maximum likelihood estimation; 4.3.1.1 Simple example; 4.3.1.2 MLE uncertainty; 4.3.2 MLE of small-signal transistor model parameters; 4.3.2.1 Parasitic parameter estimation; 4.3.2.2 Application to parasitic FET model extraction4.3.2.3 MLE of intrinsic model parameters4.3.2.4 Application to intrinsic FET model extraction; 4.3.3 Comparison between MLE and the direct extraction method; 4.3.4 Application of MLE in RF-CMOS de-embedding; 4.3.4.1 Method description; 4.3.4.2 Example using 130 nm RF-CMOS measurements; 4.3.4.3 Comparison between different de-embedding methods; 4.3.5 Discussion; 4.4 Complexity versus uncertainty in equivalent circuit modeling; 4.4.1 Finding an optimum model topology; 4.4.2 An illustrative example; 4.4.2.1 MSE estimation procedure; 4.4.2.2 Results; 4.5 Summary and discussion; References5 The large-signal model: theoretical foundations, practical considerations, and recent trendsAchieve accurate and reliable parameter extraction using this complete survey of state-of-the-art techniques and methods. A team of experts from industry and academia provides you with insights into a range of key topics, including parasitics, intrinsic extraction, statistics, extraction uncertainty, nonlinear and DC parameters, self-heating and traps, noise, and package effects. Learn how similar approaches to parameter extraction can be applied to different technologies. A variety of real-world industrial examples and measurement results show you how the theories and methods presented can be used in practice. Whether you use transistor models for evaluation of device processing and you need to understand the methods behind the models you use, or you want to develop models for existing and new device types, this is your complete guide to parameter extraction.Cambridge RF and microwave engineering series.TransistorsMathematical modelsElectronic circuit designTransistorsMathematical models.Electronic circuit design.621.3815/28Rudolph Matthias1969-Fager ChristianRoot David E.UkCbUPUkCbUPBOOK9910827953503321Nonlinear transistor model parameter extraction techniques4028223UNINA