04196nam 2200613 450 991082787450332120180731044137.01-4704-0140-1(CKB)3360000000464745(EBL)3113846(SSID)ssj0000889285(PQKBManifestationID)11488400(PQKBTitleCode)TC0000889285(PQKBWorkID)10876376(PQKB)10237412(MiAaPQ)EBC3113846(RPAM)2559333(PPN)195414438(EXLCZ)99336000000046474520140904h19951995 uy 0engur|n|---|||||txtccrTwo-generator discrete subgroups of PSL (2, R) /Jane GilmanProvidence, Rhode Island :American Mathematical Society,1995.©19951 online resource (221 p.)Memoirs of the American Mathematical Society,0065-9266 ;Volume 117, Number 561"September 1995, volume 117, number 561 (fourth of 5 numbers)."0-8218-0361-1 Includes bibliographical references.""Contents""; ""I: Introduction""; ""1 Introduction""; ""1.1 Overview Intersecting Axes""; ""1.2 Overview of the intertwining cases""; ""1.3 Why an algorithm is needed""; ""2 The Acute Triangle Theorem""; ""2.1 Nielsen equivalence""; ""2.2 Idea of proof: Acute triangle theorem""; ""2.3 Labeling Conventions""; ""2.4 Ascending order conventions""; ""2.5 The Triangle Algorithm""; ""2.6 Q and the last triangle along A""; ""2.7 Combining triangle algorithm steps""; ""2.8 The sides and heights converge to 0""; ""2.9 Acute triangle theorem: proof""; ""3 Discreteness Theorem Proof Outline""""3.1 The Discreteness Theorem""""3.2 Discreteness theorem""; ""3.3 Geometric equivalence theorems""; ""II: Preliminaries""; ""4 Triangle Groups and their Tilings""; ""4.1 Basic facts about triangle groups""; ""4.2 Minimal tiling distances""; ""4.3 The wedge at a vertex""; ""4.4 Proofs of lemmas and theorems""; ""4.5 Additional Notation""; ""4.6 Distances in the extended wedge""; ""5 Pentagons""; ""5.1 Constructing the pentagon, P[sub(A,B)]""; ""5.2 Notation""; ""5.3 Applying the Poincare Polygon Theorem""; ""5.4 Pentagon Tilings""; ""5.5 Distances in the shingling""""8.4 Pentagon distances (2,3, n) t = 3 k = 3""; ""9 Nielsen Eq: (2,3, n) t = 3; k = 3""; ""9.1 Introduction""; ""9.2 Types of triples: distances""; ""9.3 Locating t[sub(2)] and t[sub(3)]""; ""10 Nielsen Eq: (2,4, n) t = 2; k = 2""; ""10.1 Introduction""; ""10.2 Types of triples""; ""10.3 Location of t[sub(1)],t[sub(2)] and t[sub(3)]""; ""11 Pentagon t = 9 & 2â€?2 Spectrum""; ""11.1 Step 1: Label the wedge""; ""11.2 Step 2: Double and Extend""; ""11.3 Step 3: Drop perpendiculars""; ""11.4 The twoâ€?two spectrum""; ""11.5 More distance computations""; ""11.6 Distances to qÂ?[sub(0)]""""11.7 Locate three order two points""""12 The Seven & Geometric Eq t = 9""; ""12.1 Introduction""; ""12.2 The variation of h and b""; ""12.3 Rule out a seven on the β side""; ""12.4 Rule out a seven on the D side""; ""12.5 Interior sevens""; ""12.6 Notation""; ""12.7 Geometric equivalence (2,3, 7) t = 9; k = 2""; ""13 Discreteness Theorem Proof""; ""13.1 The Proof of the Discreteness Theorem""; ""13.2 The proof of sufficiency""; ""IV: The Real Number Algorithm and the Turing Machine Algorithm""; ""14 Forms of the Algorithm""; ""14.1 What is an algorithm?""""14.2 The Elliptic Order Algorithm""Memoirs of the American Mathematical Society ;Volume 117, Number 561.Fuchsian groupsKleinian groupsTeichmüller spacesFuchsian groups.Kleinian groups.Teichmüller spaces.515/.223Gilman Jane1945-1606330MiAaPQMiAaPQMiAaPQBOOK9910827874503321Two-generator discrete subgroups of PSL (2, R)3932076UNINA