05120nam 2200673 a 450 991082651450332120240404143407.0981-277-664-8(CKB)1000000000414877(EBL)1679572(OCoLC)879023793(SSID)ssj0000101034(PQKBManifestationID)11125079(PQKBTitleCode)TC0000101034(PQKBWorkID)10060131(PQKB)11258497(MiAaPQ)EBC1679572(WSP)00005091(Au-PeEL)EBL1679572(CaPaEBR)ebr10201145(CaONFJC)MIL505385(EXLCZ)99100000000041487720030328d2002 uy 0engur|n|---|||||txtccrAlgebraic invariants of links /Jonathan Hillman1st ed.River Edge, NJ World Scientificc20021 online resource (321 p.)K & E series on knots and everything ;v. 32Description based upon print version of record.981-238-154-6 Includes bibliography (p. 277-298) and index.Contents ; Preface ; Part 1. Abelian Covers ; Chapter 1. Links ; 1.1. Basic notions ; 1.2. The link group ; 1.3. Homology boundary links ; 1.4. Z/2Z-boundary links ; 1.5. Isotopy concordance and /-equivalence ; 1.6. Link homotopy and surgery ; 1.7. Ribbon links1.8. Link-symmetric groups 1.9. Link composition ; Chapter 2. Homology and Duality in Covers ; 2.1. Homology and cohomology with local coefficients ; 2.2. Covers of link exteriors ; 2.3. Poincare duality and the Blanchfield pairings ; 2.4. The total linking number cover2.5. The maximal abelian cover 2.6. Concordance ; 2.7. Additivity ; 2.8. The Seifert approach for boundary 1-links ; 2.9. Signatures ; Chapter 3. Determinantal Invariants ; 3.1. Elementary ideals ; 3.2. The Elementary Divisor Theorem ; 3.3. Extensions3.4. Reidemeister-Franz torsion 3.5. Steinitz-Fox-Smythe invariants ; 3.6. 1- and 2-dimensional rings ; 3.7. Bilinear pairings ; Chapter 4. The Maximal Abelian Cover ; 4.1. Metabelian groups and the Crowell sequence ; 4.2. Free metabelian groups ; 4.3. Link module sequences4.4. Localization of link module sequences 4.5. Chen groups ; 4.6. Applications to links ; 4.7. Chen groups nullity and longitudes ; 4.8. I-equivalence ; 4.9. The sign-determined Alexander polynomial ; 4.10. Higher dimensional links ; Chapter 5. Sublinks and Other Abelian Covers5.1. The Torres conditions This book is intended as a reference on links and on the invariants derived via algebraic topology from covering spaces of link exteriors. It emphasizes features of the multicomponent case not normally considered by knot theorists, such as longitudes, the homological complexity of many-variable Laurent polynomial rings, free coverings of homology boundary links, the fact that links are not usually boundary links, the lower central series as a source of invariants, nilpotent completion and algebraic closure of the link group, and disc links. Invariants of the types considered here play an esseK & E series on knots and everything ;v. 32.Link theoryInvariantsAbelian groupsLink theory.Invariants.Abelian groups.514.224Hillman Jonathan A(Jonathan Arthur),1947-60427MiAaPQMiAaPQMiAaPQBOOK9910826514503321Algebraic invariants of links3944185UNINA