02052nam 2200481 450 991082285300332120230809233544.01-119-30104-11-119-30105-X1-119-30106-8(CKB)4330000000010071(MiAaPQ)EBC4850322(DLC) 2017007223(Au-PeEL)EBL4850322(CaPaEBR)ebr11379852(OCoLC)986172609(EXLCZ)99433000000001007120170512h20172017 uy 0engurcnu||||||||rdacontentrdamediardacarrierSpline collocation methods for partial differential equations with applications in R /William E. SchiesserHoboken, New Jersey :Wiley,2017.©20171 online resource (551 pages) illustrations, tables1-119-30103-3 Includes bibliographical references at the end of each chapters and index.One-dimensional PDEs -- Multidimensional PDEs -- Navier-Stokes, Burgers equations -- Korteweg-deVries equation -- Maxwell equations -- Poisson-Nernst-Planck equations -- Fokker-Planck equation -- Fisher-Kolmogorov equation -- Klein-Gordon equation -- Boussinesq equation -- Cahn-Hilliard equation -- Camassa-Holm equation -- Burgers-Huxley equation -- Gierer-Meinhardt equations -- Keller-Segel equations -- Fitzhugh-Nagumo equations -- Euler-Poisson-Darboux equation -- Kuramoto-Sivashinsky equation -- Einstein-Maxwell equations.Differential equations, PartialMathematical modelsSpline theoryDifferential equations, PartialMathematical models.Spline theory.515/.353Schiesser W. E.506133MiAaPQMiAaPQMiAaPQBOOK9910822853003321Spline collocation methods for partial differential equations3991254UNINA