03387oam 2200685I 450 991082275150332120230105190739.00-429-11620-91-282-90218-097866129021851-4200-1463-310.1201/EBK0824740993(CKB)2670000000048269(EBL)589942(OCoLC)680038567(SSID)ssj0000416259(PQKBManifestationID)11304620(PQKBTitleCode)TC0000416259(PQKBWorkID)10422346(PQKB)11589592(MiAaPQ)EBC589942(Au-PeEL)EBL589942(CaPaEBR)ebr10419935(CaONFJC)MIL290218(PPN)221805028(OCoLC)1287179999(FINmELB)ELB154315(EXLCZ)99267000000004826920180420d2010 uy 0engur|n|---|||||txtccrDynamic programming foundations and principles /Moshe Sniedovich2nd ed.Boca Raton CRC Press2010Boca Raton :CRC Press,2010.1 online resource (616 p.)Pure and applied mathematicsDescription based upon print version of record.0-8247-4099-8 Includes bibliographical references.Front cover; Preface (first edition); List of Figures; List of Tables; Contents; Chapter 1. Introduction; Chapter 2. Fundamentals; Chapter 3. Multistage Decision Model; Chapter 4. Dynamic Programming - An Outline; Chapter 5. Solution Methods; Chapter 6. Successive Approximation Methods; Chapter 7. Optimal Policies; Chpater 8. The Curse of Dimensionality; Chapter 9. The Rest Is Mathematics and Experience; Chapter 10. Refinements; Chapter 11. The State; Chapter 12. Parametric Schemes; Chapter 13. The Principle of Optimality; Chapter 14. Forward Decomposition; Chapter 15. Push!Chapter 16. What Then Is Dynamic Programming?Appendix A. Contraction Mapping; Appendix B. Fractional Programming; Appendix C. Composite Concave Programming; Appendix D. The Principle of Optimality in Stochastic Processes; Appendix E. The Corridor Method; Bibliography; Back coverFocusing on the modeling and solution of deterministic multistage decision problems, this book looks at dynamic programming as a problem-solving optimization method. With over 400 useful references, this edition discusses the dynamic programming analysis of a problem, illustrates the rationale behind this analysis, and clarifies the theoretical grounds that justify the rationale. It also explains the meaning and role of the concept of state in dynamic programming, examines the purpose and function of the principle of optimality, and outlines solution strategies for problems defiant of conventiPure and Applied MathematicsDynamic programmingProgramming (Mathematics)Dynamic programming.Programming (Mathematics)519.7/03Sniedovich Moshe1945-60352MiAaPQMiAaPQMiAaPQBOOK9910822751503321Dynamic programming376373UNINA