03854nam 22006734a 450 991082145500332120200520144314.01-107-12446-81-280-41925-397866104192580-511-17662-70-511-15752-50-511-32970-90-511-54680-70-511-04440-2(CKB)111087027189934(EBL)202136(OCoLC)559663405(SSID)ssj0000242004(PQKBManifestationID)11235654(PQKBTitleCode)TC0000242004(PQKBWorkID)10299787(PQKB)10927685(UkCbUP)CR9780511546808(Au-PeEL)EBL202136(CaPaEBR)ebr10021409(CaONFJC)MIL41925(MiAaPQ)EBC202136(PPN)261355406(EXLCZ)9911108702718993420010720d2002 uy 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierSchwarz-Christoffel mapping /Tobin A. Driscoll, Lloyd N. Trefethen1st ed.Cambridge ;New York Cambridge University Press20021 online resource (xvi, 132 pages) digital, PDF file(s)Cambridge monographs on applied and computational mathematics ;v. 8Title from publisher's bibliographic system (viewed on 05 Oct 2015).0-521-80726-3 Includes bibliographical references (p. 121-130) and index.1.Introduction.1.1.The Schwarz-Christoffel idea.1.2.History --2.Essentials of Schwarz-Christoffel mapping.2.1.Polygons.2.2.The Schwarz-Christoffel formula.2.3.Polygons with one or two vertices.2.4.Triangles.2.5.Rectangles and elliptic functions.2.6.Crowding --3.Numerical methods.3.1.Side-length parameter problem.3.2.Quadrature.3.3.Inverting the map.3.4.Cross-radio parameter problem.3.5.Mapping using cross-ratios.3.6.Software --4.Variations.4.1.Mapping from the disk.4.2.Mapping from a strip.4.3.Mapping from a rectangle.4.4.Exterior maps.4.5.Periodic regions and fractals.4.6.Reflections and other transformations.4.7.Riemann surfaces.4.8.Gearlike regions.This book provides a comprehensive look at the Schwarz-Christoffel transformation, including its history and foundations, practical computation, common and less common variations, and many applications in fields such as electromagnetism, fluid flow, design and inverse problems, and the solution of linear systems of equations. It is an accessible resource for engineers, scientists, and applied mathematicians who seek more experience with theoretical or computational conformal mapping techniques. The most important theoretical results are stated and proved, but the emphasis throughout remains on concrete understanding and implementation, as evidenced by the 76 figures based on quantitatively correct illustrative examples. There are over 150 classical and modern reference works cited for readers needing more details. There is also a brief appendix illustrating the use of the Schwarz-Christoffel Toolbox for MATLAB, a package for computation of these maps.Cambridge monographs on applied and computational mathematics ;8.Conformal mappingConformal mapping.516.3/6Driscoll Tobin A(Tobin Allen),1969-632423Trefethen Lloyd N(Lloyd Nicholas)62458MiAaPQMiAaPQMiAaPQBOOK9910821455003321Schwarz - Christoffel mapping33772UNINA