04838nam 2200697 450 991082091840332120230807221020.01-119-11311-31-119-04607-61-119-04608-4(CKB)3710000000444123(EBL)2090103(SSID)ssj0001530509(PQKBManifestationID)12589512(PQKBTitleCode)TC0001530509(PQKBWorkID)11532005(PQKB)11593145(PQKBManifestationID)16049246(PQKB)24167324(MiAaPQ)EBC4040762(MiAaPQ)EBC2090103(DLC) 2015030464(Au-PeEL)EBL4040762(CaPaEBR)ebr11113850(CaONFJC)MIL812252(OCoLC)915775227(EXLCZ)99371000000044412320151104h20152015 uy 0engurcnu||||||||txtccrDiscrete wavelet transform a signal processing approach /D. SundararajanHoboken, New Jersey :Wiley,2015.©20151 online resource (340 p.)Description based upon print version of record.1-119-04606-8 Includes bibliographical references and index.Cover; Title Page; Copyright; Contents; Preface; List of Abbreviations; Chapter 1 Introduction; 1.1 The Organization of This Book; Chapter 2 Signals; 2.1 Signal Classifications; 2.1.1 Periodic and Aperiodic Signals; 2.1.2 Even and Odd Signals; 2.1.3 Energy Signals; 2.1.4 Causal and Noncausal Signals; 2.2 Basic Signals; 2.2.1 Unit-Impulse Signal; 2.2.2 Unit-Step Signal; 2.2.3 The Sinusoid; 2.3 The Sampling Theorem and the Aliasing Effect; 2.4 Signal Operations; 2.4.1 Time Shifting; 2.4.2 Time Reversal; 2.4.3 Time Scaling; 2.5 Summary; Exercises; Chapter 3 Convolution and Correlation3.1 Convolution 3.1.1 The Linear Convolution; 3.1.2 Properties of Convolution; 3.1.3 The Periodic Convolution; 3.1.4 The Border Problem; 3.1.5 Convolution in the DWT; 3.2 Correlation; 3.2.1 The Linear Correlation; 3.2.2 Correlation and Fourier Analysis; 3.2.3 Correlation in the DWT; 3.3 Summary; Exercises; Chapter 4 Fourier Analysis of Discrete Signals; 4.1 Transform Analysis; 4.2 The Discrete Fourier Transform; 4.2.1 Parseval's Theorem; 4.3 The Discrete-Time Fourier Transform; 4.3.1 Convolution; 4.3.2 Convolution in the DWT; 4.3.3 Correlation; 4.3.4 Correlation in the DWT4.3.5 Time Expansion 4.3.6 Sampling Theorem; 4.3.7 Parseval's Theorem; 4.4 Approximation of the DTFT; 4.5 The Fourier Transform; 4.6 Summary; Exercises; Chapter 5 The z-Transform; 5.1 The z-Transform; 5.2 Properties of the z-Transform; 5.2.1 Linearity; 5.2.2 Time Shift of a Sequence; 5.2.3 Convolution; 5.3 Summary; Exercises; Chapter 6 Finite Impulse Response Filters; 6.1 Characterization; 6.1.1 Ideal Lowpass Filters; 6.1.2 Ideal Highpass Filters; 6.1.3 Ideal Bandpass Filters; 6.2 Linear Phase Response; 6.2.1 Even-Symmetric FIR Filters with Odd Number of Coefficients6.2.2 Even-Symmetric FIR Filters with Even Number of Coefficients 6.3 Summary; Exercises; Chapter 7 Multirate Digital Signal Processing; 7.1 Decimation; 7.1.1 Downsampling in the Frequency-Domain; 7.1.2 Downsampling Followed by Filtering; 7.2 Interpolation; 7.2.1 Upsampling in the Frequency-Domain; 7.2.2 Filtering Followed by Upsampling; 7.3 Two-Channel Filter Bank; 7.3.1 Perfect Reconstruction Conditions; 7.4 Polyphase Form of the Two-Channel Filter Bank; 7.4.1 Decimation; 7.4.2 Interpolation; 7.4.3 Polyphase Form of the Filter Bank; 7.5 Summary; ExercisesChapter 8 The Haar Discrete Wavelet Transform 8.1 Introduction; 8.1.1 Signal Representation; 8.1.2 The Wavelet Transform Concept; 8.1.3 Fourier and Wavelet Transform Analyses; 8.1.4 Time-Frequency Domain; 8.2 The Haar Discrete Wavelet Transform; 8.2.1 The Haar DWT and the 2-Point DFT; 8.2.2 The Haar Transform Matrix; 8.3 The Time-Frequency Plane; 8.4 Wavelets from the Filter Coefficients; 8.4.1 Two Scale Relations; 8.5 The 2-D Haar Discrete Wavelet Transform; 8.6 Discontinuity Detection; 8.7 Summary; Exercises; Chapter 9 Orthogonal Filter Banks; 9.1 Haar Filter; 9.2 Daubechies Filter9.3 Orthogonality ConditionsWavelets (Mathematics)Signal processingGeometric tomographyWavelets (Mathematics)Signal processing.Geometric tomography.515/.2433Sundararajan D.909958MiAaPQMiAaPQMiAaPQBOOK9910820918403321Discrete wavelet transform3924311UNINA