12217nam 2200493 450 991082064480332120240112051737.09781630819330(electronic bk.)9781630819323(MiAaPQ)EBC30339942(Au-PeEL)EBL30339942(CKB)26027387600041(BIP)085615770(EXLCZ)992602738760004120240112d2023 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierLumped Elements for RF and Microwave Circuits /Inder J. BahlSecond edition.Norwood, MA :Artech House,[2023]©20231 online resource (593 pages)Print version: Bahl, Inder J. Lumped Elements for RF and Microwave Circuits, Second Edition Norwood : Artech House,c2022 9781630819323 Includes bibliographical references and index.Lumped Elements for RF and Microwave Circuits Second Edition -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 History of Lumped Elements -- 1.2 Why Use Lumped Elements for RF and Microwave Circuits? -- 1.3 L, C, R Circuit Elements -- 1.4 Basic Design of Lumped Elements -- 1.4.1 Capacitor -- 1.4.2 Inductor -- 1.4.3 Resistor -- 1.5 Lumped-Element Modeling -- 1.6 Fabrication -- 1.7 Applications -- References -- Chapter 2 Inductors -- 2.1 Introduction -- 2.2 Basic Definitions -- 2.2.1 Inductance -- 2.2.2 Magnetic Energy -- 2.2.3 Mutual Inductance -- 2.2.4 Effective Inductance -- 2.2.5 Impedance -- 2.2.6 Time Constant -- 2.2.7 Quality Factor -- 2.2.8 Self-Resonant Frequency -- 2.2.9 Maximum Current Rating -- 2.2.10 Maximum Power Rating -- 2.2.11 Other Parameters -- 2.3 Inductor Configurations -- 2.4 Inductor Models -- 2.4.1 Analytical Models -- 2.4.2 Coupled-Line Approach -- 2.4.3 Mutual Inductance Approach -- 2.4.4 Numerical Approach -- 2.4.5 Measurement-Based Model -- 2.5 Coupling Between Inductors -- 2.5.1 Low-Resistivity Substrates -- 2.5.2 High-Resistivity Substrates -- 2.6 Electrical Representations -- 2.6.1 Series and Parallel Representations -- 2.6.2 Network Representations -- References -- Chapter 3 Printed Inductors -- 3.1 Inductors on Si Substrate -- 3.1.1 Conductor Loss -- 3.1.2 Substrate Loss -- 3.1.3 Layout Considerations -- 3.1.4 Inductor Model -- 3.1.5 Q-Enhancement Techniques -- 3.1.6 Stacked-Coil Inductor -- 3.1.7 Temperature Dependence -- 3.2 Inductors on GaAs Substrate -- 3.2.1 Inductor Models -- 3.2.2 Figure of Merit -- 3.2.3 Comprehensive Inductor Data -- 3.2.4 Q-Enhancement Techniques -- 3.2.5 Compact Inductors -- 3.2.6 High Current Handling Capability Inductors -- 3.3 Printed Circuit Board Inductors -- 3.4 Hybrid Integrated Circuit Inductors -- 3.4.1 Thin-Film Inductors -- 3.4.2 Thick-Film Inductors.3.4.3 LTCC Inductors -- 3.5 Ferromagnetic Inductors -- References -- Chapter 4 Wire Inductors -- 4.1 Wire-Wound Inductors -- 4.1.1 Analytical Expressions -- 4.1.2 Compact High-Frequency Inductors -- 4.2 Bond Wire Inductor -- 4.2.1 Single and Multiple Wires -- 4.2.2 Wire Near a Corner -- 4.2.3 Wire on a Substrate Backed by a Ground Plane -- 4.2.4 Wire Above a Substrate Backed by a Ground Plane -- 4.2.5 Curved Wire Connecting Substrates -- 4.2.6 Twisted Wire -- 4.2.7 Maximum Current Handling of Wires -- 4.3 Wire Models -- 4.3.1 Numerical Methods for Bond Wires -- 4.3.2 Measurement-Based Model for Air Core Inductors -- 4.3.3 Measurement-Based Model for Bond Wires -- 4.4 Broadband Inductors -- 4.5 Magnetic Materials -- References -- Chapter 5 Capacitors -- 5.1 Introduction -- 5.2 Capacitor Parameters -- 5.2.1 Capacitor Value -- 5.2.2 Effective Capacitance -- 5.2.3 Tolerances -- 5.2.4 Temperature Coefficient -- 5.2.5 Quality Factor -- 5.2.6 Equivalent Series Resistance -- 5.2.7 Series and Parallel Resonances -- 5.2.8 Dissipation Factor or Loss Tangent -- 5.2.9 Time Constant -- 5.2.10 Rated Voltage -- 5.2.11 Rated Current -- 5.3 Chip Capacitor Types -- 5.3.1 Multilayer Dielectric Capacitor -- 5.3.2 Multiplate Capacitor -- 5.4 Discrete Parallel Plate Capacitor Analysis -- 5.4.1 Vertically Mounted Series Capacitor -- 5.4.2 Flat-Mounted Series Capacitor -- 5.4.3 Flat-Mounted Shunt Capacitor -- 5.4.4 Measurement-Based Model -- 5.5 Voltage and Current Ratings -- 5.5.1 Maximum Voltage Rating -- 5.5.2 Maximum RF Current Rating -- 5.5.3 Maximum Power Dissipation -- 5.6 Capacitor Electrical Representation -- 5.6.1 Series and Shunt Connections -- 5.6.2 Network Representations -- References -- Chapter 6 Monolithic Capacitors -- 6.1 MIM Capacitor Models -- 6.1.1 Simple Lumped Equivalent Circuit -- 6.1.2 Single Microstrip-Based Distributed Model.6.1.3 EC Model for MIM Capacitor on Si -- 6.1.4 EM Simulations of Capacitors -- 6.2 High-Density Capacitors -- 6.2.1 Multilayer Capacitors -- 6.2.2 Ultra-Thin-Film Capacitors -- 6.2.3 High-K Capacitors -- 6.2.4 Fractal Capacitors -- 6.2.5 Ferroelectric Capacitors -- 6.3 Capacitor Shapes -- 6.3.1 Rectangular Capacitors -- 6.3.2 Circular Capacitors -- 6.3.3 Octagonal Capacitors -- 6.4 Design Considerations -- 6.4.1 Q-Enhancement Techniques -- 6.4.2 Tunable Capacitor -- 6.4.3 Maximum Power Handling -- References -- Chapter 7 Interdigital Capacitors -- 7.1 Interdigital Capacitor Models -- 7.1.1 Approximate Analysis -- 7.1.2 Full-Wave Analysis -- 7.1.3 Measurement-Based Model -- 7.2 Design Considerations -- 7.2.1 Compact Size -- 7.2.2 Multilayer Capacitor -- 7.2.3 Q-Enhancement Techniques -- 7.2.4 Voltage Tunable Capacitor -- 7.2.5 High-Voltage Operation -- 7.3 Interdigital Structure as a Photodetector -- References -- Chapter 8 Resistors -- 8.1 Introduction -- 8.2 Basic Definitions -- 8.2.1 Power Rating -- 8.2.2 Temperature Coefficient -- 8.2.3 Resistor Tolerances -- 8.2.4 Maximum Working Voltage -- 8.2.5 Maximum Frequency of Operation -- 8.2.6 Stability -- 8.2.7 Noise -- 8.2.8 Maximum Current Rating -- 8.3 Resistor Types -- 8.3.1 Chip Resistors -- 8.3.2 MCM Resistors -- 8.3.3 Monolithic Resistors -- 8.4 High-Power Resistors -- 8.5 Resistor Models -- 8.5.1 EC Model -- 8.5.2 Distributed Model -- 8.5.3 Meander Line Resistor -- 8.6 Resistor Representations -- 8.6.1 Network Representations -- 8.6.2 Electrical Representations -- 8.7 Effective Conductivity -- 8.8 Thermistors -- References -- Chapter 9 Via Holes -- 9.1 Types of Via Holes -- 9.1.1 Via Hole Connection -- 9.1.2 Via Hole Ground -- 9.2 Via Hole Models -- 9.2.1 Analytical Expression -- 9.2.2 Quasi-static Method -- 9.2.3 Parallel Plate Waveguide Model -- 9.2.4 Method of Momen.9.2.5 Measurement-Based Model -- 9.3 Via Fence -- 9.3.1 Coupling Between Via Holes -- 9.3.2 Radiation from Via Ground Plug -- 9.4 Plated Heat Sink Via -- 9.5 Via Hole Layout -- 9.6 Silicon Vias -- References -- Chapter 10 Airbridges and Dielectric Crossovers -- 10.1 Airbridge and Crossov -- 10.2 Analysis Techniques -- 10.2.1 Quasi-static Method -- 10.2.2 Full-Wave Analysis -- 10.3 Models -- 10.3.1 Analytical Model -- 10.3.2 Measurement-Based Model -- References -- Chapter 11 Inductor Transformers and Baluns -- 11.1 Basic Theory -- 11.1.1 Parameters Definition -- 11.1.2 Analysis of Transformers -- 11.1.3 Ideal Transformers -- 11.1.4 Equivalent Circuit Representation -- 11.1.5 Equivalent Circuit of a Practical Transformer -- 11.1.6 Wideband Impedance Matching Transformers -- 11.1.7 Types of Transformers -- 11.2 Wire-Wrapped Transformers -- 11.2.1 Tapped Coil Transformers -- 11.2.2 Bond Wire Transformer -- 11.3 Transmission-Line Type Transformers -- 11.4 Parallel Conductor Winding Transformers on Si Substrate -- 11.5 Spiral Transformers on GaAs Substrate -- 11.6 Baluns -- 11.6.1 Lumped-Element LP/HP Filter Baluns -- 11.6.2 Lumped-Element Power Divider and 180◦ Hybrid Baluns -- 11.6.3 Coil Transformer Baluns -- 11.6.4 Transmission-Line Baluns -- 11.6.5 Marchand Baluns -- 11.6.6 Common-Mode Rejection Ratio -- References -- Chapter 12 Lumped-Element Passive Components -- 12.1 Impedance Matching Techniques -- 12.1.1 One-Port and Two-Port Networks -- 12.1.2 Lumped-Element Narrowband Matching Techniques -- 12.1.3 Lumped-Element Wideband Matching Techniques -- 12.2 90◦ Hybrids -- 12.2.1 Broadband 3-dB 90◦ Hybrid -- 12.2.2 Reconfigurable 3-dB 90◦ Hybrid -- 12.2.3 Dual-Band 3-dB 90◦ Hybrid -- 12.2.4 Differential 3-dB 90◦ Hybrid -- 12.3 180◦ Hybrids -- 12.3.1 Compact Lumped-Element 3-dB 180◦ Hybrid -- 12.3.2 Wideband Lumped-Element Differential 3-dB 180◦ Hybrids.12.4 Directional Couplers -- 12.4.1 Transformer Directional Couplers -- 12.4.3 Differential Directional Couplers -- 12.4.4 Directional Coupler with Impedance Matching -- 12.5 Power Dividers/Combiners -- 12.5.1 Power Dividers with 90◦ and 180◦ Phase Difference -- 12.5.2 Broadband 2-Way and 4-Way Power Dividers -- 12.5.3 Compact 2-Way and 4-Way Power Dividers -- 12.5.4 Dual-Band Power Dividers -- 12.5.5 Differential Power Dividers -- 12.6 Filter -- 12.6.1 Ceramic Lumped-Element LTCC Bandpass Filters -- 12.6.2 Dual-Band Filters -- 12.6.3 Reconfigurable and Switchable Filters -- 12.6.4 High Selectivity Compact BPF -- 12.6.5 Differential-Mode and Common-Mode Rejection Filters -- 12.6.6 Tunable BPF with Constant Bandwidth -- 12.6.7 Compact Si Bandpass Filter -- 12.6.8 Compact CMOS Bandpass Filters -- 12.7 Biasing Networks -- 12.7.1 Biasing of Diodes and Control Components -- 12.7.2 Biasing of Active Circuits -- References -- Chapter 13 Lumped-Element Control Components -- 13.1 Switches -- 13.1.1 Switch Configurations -- 13.1.2 Broadband Switches -- 13.1.3 MESFET Switches -- 13.1.4 HEMT Switches -- 13.1.5 CMOS Switches -- 13.1.6 GaN HEMT Switches -- 13.1.7 Comparison of Switch Technologies -- 13.2 Phase Shifters -- 13.2.1 Types of Phase Shifters -- 13.2.2 Switched-Network Phase Shifters -- 13.2.3 Multibit Phase Shifter Circuits -- 13.2.4 MESFET/HEMT Multibit Phase Shifters -- 13.2.5 CMOS Phase Shifters -- 13.2.6 Analog Phase Shifters -- 13.2.7 Broadband Phase Shifters -- 13.2.8 Ultrawideband Phase Shifters -- 13.2.9 Millimeter-Wave Phase Shifters -- 13.2.10 Active Phase Shifters -- 13.3 Attenuators -- 13.3.1 Attenuator Configurations -- 13.3.2 Multibit Attenuators -- 13.3.3 GaAs MMIC Step Attenuators -- 13.3.4 Si CMOS Step Attenuators -- 13.3.5 Variable Voltage Attenuators -- 13.3.6 GaN HEMT Attenuator -- 13.3.7 Phase Compensated Attenuators.13.3.8 CMOS Attenuator with Integrated Switch.Fully updated and including entirely new chapters, this Second Edition provides in-depth coverage of the different types of RF and microwave circuit elements, including inductors, capacitors, resistors, transformers, via holes, airbridges, and crossovers. Featuring extensive formulas for lumped elements, design trade-offs, and an updated and current list of references, the book helps you understand the value and usefulness of lumped elements in the design of RF, microwave and millimeter wave components and circuits. You'll find a balanced treatment between standalone lumped elements and their circuits using MICs, MMICs and RFICs technologies. You'll also find detailed information on a broader range RFICs that was not available when the popular first edition was published. The book captures - in one consolidated volume -- the fundamentals, equations, modeling, examples, references and overall procedures to design, test and produce microwave components that are indispensable in industry and academia today. With its superb organization and expanded coverage of the subject, this is a must-have, go-to resource for practicing engineers and researchers in industry, government and university and microwave engineers working in the antenna area. Students will also find it a useful reference with its clear explanations, many examples and practical modeling guidelines.Lumped elements (Electronics)Lumped elements (Electronics)780Bahl Inder J.67558MiAaPQMiAaPQMiAaPQ9910820644803321Lumped Elements for RF and Microwave Circuits3960617UNINA