05912nam 2200733Ia 450 991082010110332120200520144314.01-281-86750-097866118675081-86094-883-9(CKB)1000000000550471(EBL)1214956(SSID)ssj0000297089(PQKBManifestationID)12071885(PQKBTitleCode)TC0000297089(PQKBWorkID)10333564(PQKB)10477780(MiAaPQ)EBC1214956(WSP)0000P474(Au-PeEL)EBL1214956(CaPaEBR)ebr10699092(CaONFJC)MIL186750(OCoLC)815742094(EXLCZ)99100000000055047120070403d2007 uy 0engur|n|---|||||txtrdacontentcrdamediacrrdacarrierFundamentals and applications of biophotonics in dentistry /[edited by] Anil Kishen, Anand Asundi1st ed.London Imperial College Press ;Hackensack, NJ Distributed by World Scientificc20071 online resource (341 pages)Series on biomaterials and bioengineering ;v. 4Description based upon print version of record.1-86094-704-2 Includes bibliographical references.Preface; Contents; FUNDAMENTALS; Chapter 1 Introduction; 1.1 Introduction; 1.2 Definition and Significance; 1.3 Classification of Biophotonics in Dentistry; 1.3.1 Diagnostic; 1.3.2 Therapeutic; 1.3.3 Research; 1.4 Future Opportunities; 1.5 Scope of this Book; Chapter 2 Photomechanics; 2.1 Introduction to Mechanics; 2.1.1 Force and Stress; 2.1.2 Deformation and Strain; 2.1.3 Stress-Strain Equations; 2.2 Basic Optical Engineering; 2.2.1 Geometrical Optics; 2.2.2 Physical (Wave) Optics; 2.2.3 Photonics; 2.3 Photomechanics; 2.3.1 Moire and Grid Methods; 2.3.2 Speckle Methods2.3.3 Photoelasticity; 2.3.4 Holography; 2.3.5 Digital Photomechanics; 2.4 Concluding Remarks; Chapter 3 Biomedical Imaging; 3.1 Introduction; 3.2 Non-Linear Optical Microscopy (NLOM): Multiphoton Excited Fluorescence (MPEF) and Second Harmonic Generation (SGH); 3.2.1 Principles of NLOM; 3.2.2 Development and Applications of NLOM; 3.2.3 NLOM in Dentistry; 3.3 Optical Coherence Tomography (OCT); 3.3.1 Principles of OCT; 3.3.2 Developments and Applications of OCT; 3.3.3 OCT in Dentistry; 3.4 Coherent Anti-Stokes Raman Scattering (CARS) and Modulated Imaging (MI)3.5 Fluorescence Contrast Enhancement; 3.6 Concluding Remarks; Chapter 4 Spectroscopy; 4.1 Introduction; 4.2 Molecular Orbitals and Transitions; 4.3 Transition Dipole Moment; 4.4 Spin Selection Rule; 4.5 Franck-Condon Principle; 4.6 Jablonski Diagram; 4.7 Stokes Shift; 4.8 Spectrophotometry; 4.9 Fluorescence Intensity and Lifetime; 4.10 Spectrofluorimetry; 4.11 Fluorescence Quenching; 4.12 Fluorescence Resonance Energy Transfer (FRET); 4.13 Fourier Transform Infrared (FTIR) Spectroscopy; 4.14 Concluding Remarks; Chapter 5 Lasers and Laser Tissue Interaction; 5.1 Introduction; 5.2 Laser Basics5.2.1 Characteristics of Lasers; 5.3 Light Propagation in Tissue; 5.4 Optical Imaging and Diagnosis; 5.4.1 Optical Imaging; 5.4.2 Optical Spectroscopic Diagnosis; 5.5 Optical Processing of Tissue; 5.5.1 Photothermal Effects; 5.5.2 Photomechanical Effects; 5.5.3 Photochemical Effects; 5.5.4 Applications of Laser Processing of Tissue; 5.6 Concluding Remarks; Chapter 6 Mechanisms and Applications of Photodynamic Therapy; 6.1 Historical Background; 6.2 Photosensitizers; 6.3 Light Applicators; 6.4 PDT Mechanisms; 6.4.1 Photophysics and Photochemistry; 6.4.2 Biological Effect; 6.5 PDT Dosimetry6.6 Progress in Clinical Application; 6.6.1 Non-Malignant Diseases; 6.6.2 Malignant Diseases; 6.7 PDT in Dentistry; 6.7.1 Technical Challenges; 6.7.2 Current Status; 6.8 Concluding Remarks; APPLICATIONS; Chapter 7 Dental Photo-Biomechanics; 7.1 Introduction; 7.2 Photoelasticity; 7.2.1 Introduction; 7.2.2 Photoelastic Models; 7.2.3 Polariscope; 7.2.4 Photoelastic Fringe Analysis; 7.2.5 Applications of Photoelasticity in Dentistry; 7.3 Moire Interferometry; 7.3.1 Introduction; 7.3.2 Specimen Grating and Moire Interferometer; 7.3.3 Applications of Moire Technique in Dentistry; 7.4 Electronic Speckle Pattern Correlation InterferometryBiophotonics in dentistry is a rapidly growing area. Unlike other books, this invaluable compendium touches on the fundamental areas in biophotonics. Contributed by world-renowned authors, it provides a basic understanding on a range of topics for individuals of different backgrounds to acquire a minimum knowledge of research and development in biophotonics. The chapters are arranged in two major categories. The first describes the fundamental aspects of photonics, such as photomechanics, biomedical imaging, lasers and laser-tissue interaction, spectroscopy and photodynamic therapy. The second details the applications of biophotonics, with special relevance to dentistry, including dental photobiomechanics, Raman spectroscopy and dental tissue opticsSeries on Biomaterials & BioengineeringBiophotonics in dentistryLasers in dentistryPhotochemotherapyLaser spectroscopyPhotonicsLasers in dentistry.Photochemotherapy.Laser spectroscopy.Photonics.617.60028Kishen Anil1617060Asundi Anand627389MiAaPQMiAaPQMiAaPQBOOK9910820101103321Fundamentals and applications of biophotonics in dentistry3948084UNINA