01619nam a2200301 i 4500991001798809707536030930s2003 a b 1 eng d0521535697b12198742-39ule_instDip.to Matematicaeng516.3621AMS 53-XXLC QA609.H47Hertrich-Jeromin, Udo149563Introduction to Möbius differential geometry /Udo Hertrich-JerominCambridge :Cambridge University Press,2003xi, 413 p. :ill. ;23 cmLondon Mathematical Society lecture note series,0076-0552 ;300Includes bibliographical references (p. [384]-407) and indexContents: Preliminaries: the Riemannian point of view ; The projective model ; Application: conformally flat hypersurfaces ; Application: isothermic and Willmore surfaces ; A quaternionic model ; Application: smooth and discrete isothermic surfaces ; Clifford algebra model ; A Clifford algebra model: Vahlen matrices ; Applications: orthogonal systems, isothermic surfacesGeometry, Differential.b1219874202-04-1430-09-03991001798809707536LE013 53-XX HER11 C.1 (2003)12013000140339le013pE44.90-l- 01010.i1257350430-09-03LE013 53-XX HER11 C.2 (2003)12013000207407le013pE50.76-l- 00000.i1472175214-04-08Introduction to Möbius differential geometry157413UNISALENTOle01330-09-03ma -engenk0102859nam 2200565 450 991081906820332120230810001611.03-11-049257-13-11-049427-210.1515/9783110494273(CKB)3710000000981752(MiAaPQ)EBC4793941(DE-B1597)469743(OCoLC)979633980(OCoLC)980290242(DE-B1597)9783110494273(Au-PeEL)EBL4793941(CaPaEBR)ebr11334836(CaONFJC)MIL978210(OCoLC)971365362(EXLCZ)99371000000098175220160916h20172017 uy| 0engurcnu||||||||rdacontentrdamediardacarrierVanishing viscosity method solutions to nonlinear systems /by Boling Guo [and three others]Berlin ;Boston :Walter de Gruyter GmbH & Company, KG,[2017]©20171 online resource (570 pages) illustrations3-11-049528-7 Includes bibliographical references.Frontmatter -- Preface -- Contents -- 1. Sobolev Space and Preliminaries -- 2. The Vanishing Viscosity Method of Some Nonlinear Evolution System -- 3. The Vanishing Viscosity Method of Quasilinear Hyperbolic System -- 4. Physical Viscosity and Viscosity of Difference Scheme -- 5. Convergence of Lax-Friedrichs Scheme, Godunov Scheme and Glimm Scheme -- 6. Electric-Magnetohydrodynamic Equations -- ReferencesThe book summarizes several mathematical aspects of the vanishing viscosity method and considers its applications in studying dynamical systems such as dissipative systems, hyperbolic conversion systems and nonlinear dispersion systems. Including original research results, the book demonstrates how to use such methods to solve PDEs and is an essential reference for mathematicians, physicists and engineers working in nonlinear science. Contents:PrefaceSobolev Space and PreliminariesThe Vanishing Viscosity Method of Some Nonlinear Evolution SystemThe Vanishing Viscosity Method of Quasilinear Hyperbolic SystemPhysical Viscosity and Viscosity of Difference SchemeConvergence of Lax-Friedrichs Scheme, Godunov Scheme and Glimm SchemeElectric-Magnetohydrodynamic EquationsReferences Viscosity solutionsVanishing viscosity method.dissipative systems.partial differential equations.Viscosity solutions.515/.353Guo Boling, 879545Guo BolingMiAaPQMiAaPQMiAaPQBOOK9910819068203321Vanishing viscosity method3940846UNINA