01290nam 2200337Ia 450 99638447490331620200824132858.0(CKB)4940000000075826(EEBO)2240961257(OCoLC)ocm12251644e(OCoLC)12251644(EXLCZ)99494000000007582619850710d1651 uy |engurbn||||a|bb|A description of the new world, or, America, islands and continent[electronic resource] and by what people those regions are now inhabited, and what places are there desolate and without inhabitants, and the bays, rivers, capes, forts, cities and their latitudes, the seasby George Gardyner ..London Printed for Robert Leybourn and are to be sold by Thomas Pirrepoint ...1651[14], 187, [1] pErrata: p. [6].Reproduction of original in Harvard University Libraries.eebo-0062AmericaDescription and travelGardyner George1011340EAAEAAm/cWaOLNBOOK996384474903316A description of the new world, or, America, islands and continent2405921UNISA02095nam 2200577 450 991081894160332120180613001251.01-4704-0548-2(CKB)3360000000464402(EBL)3113465(SSID)ssj0000976577(PQKBManifestationID)11569853(PQKBTitleCode)TC0000976577(PQKBWorkID)11019193(PQKB)10408991(MiAaPQ)EBC3113465(RPAM)4645087(PPN)195411013(EXLCZ)99336000000046440220790511h19791979 uy| 0engur|n|---|||||txtccrSurfaces of nonpositive curvature /Patrick EberleinProvidence :American Mathematical Society,[1979]©19791 online resource (101 p.)Memoirs of the American Mathematical Society,0065-9266 ;number 218"Volume 20 ... (first of 2 numbers)."0-8218-2218-7 Bibliography: pages 89-90.""1. If M is not homeomorphic to a plane, cylinder, Moebius band, torus or Klein bottle, then M has a discrete isometry group""""2. If M has finitely generated fundamental group and is not in the list above, then M has a finite isometry group""; ""CHAPTER 6 APPENDIX I""; ""Proofs of results stated in Chapter 3""; ""CHAPTER 7 APPENDIX II""; ""Proof of results stated in Chapter 4""; ""REFERENCES""Memoirs of the American Mathematical Society ;no. 218.Geometry, DifferentialManifolds (Mathematics)SurfacesGeometry, Differential.Manifolds (Mathematics)Surfaces.510/.8 s516/.362Eberlein Patrick1944-1639837MiAaPQMiAaPQMiAaPQBOOK9910818941603321Surfaces of nonpositive curvature4066774UNINA