05553nam 2200769Ia 450 991081857280332120200520144314.00-19-965539-197866111604011-4356-3892-10-19-152475-11-281-16040-7(CKB)2560000000298323(EBL)415772(OCoLC)476244818(SSID)ssj0000246099(PQKBManifestationID)11186305(PQKBTitleCode)TC0000246099(PQKBWorkID)10181136(PQKB)10854160(StDuBDS)EDZ0000072348(MiAaPQ)EBC415772(Au-PeEL)EBL415772(CaPaEBR)ebr10212201(CaONFJC)MIL116040(MiAaPQ)EBC7037785(Au-PeEL)EBL7037785(PPN)156591936(OCoLC)138342362(FINmELB)ELB164798(EXLCZ)99256000000029832320061020d2008 uy 0engur|n|---|||||txtccrSimple models of magnetism /Ralph Skomski1st ed.Oxford Oxford University Pressc20081 online resource (366 p.)Oxford Graduate TextsDescription based upon print version of record.0-19-857075-9 0-19-171881-5 Includes bibliographical references and index.Contents; List of abbreviations; List of panels and tables; Preface; 1 Introduction: The simplest models of magnetism; 1.1 Field and magnetization; 1.2 The circular-current model; 1.3 Paramagnetic spins; 1.4 Ising model and exchange; 1.5 The viscoelastic model of magnetization dynamics; Exercises; 2 Models of exchange; 2.1 Atomic origin of exchange; 2.1.1 One-electron wave functions; 2.1.2 Two-electron wave functions; 2.1.3 Hamiltonian and spin structure; 2.1.4 Heisenberg model; 2.1.5 Independent-electron approximation; 2.1.6 Correlations; 2.1.7 *Hubbard model; 2.1.8 *Kondo model2.2 Magnetic ions2.2.1 Atomic orbitals; 2.2.2 Angular-momentum algebra; 2.2.3 Vector model and Hund's rules; 2.2.4 Spin and orbital moment; 2.3 Exchange between local moments; 2.3.1 Exchange in oxides; 2.3.2 Ruderman-Kittel exchange; 2.3.3 Zero-temperature spin structure; 2.4 Itinerant magnetism; 2.4.1 Free electrons, Pauli susceptibility, and the Bloch model; 2.4.2 Band structure; 2.4.3 Stoner model and beyond; 2.4.4 *Itinerant antiferromagnets; Exercises; 3 Models of magnetic anisotropy; 3.1 Phenomenological models; 3.1.1 Uniaxial anisotropy3.1.2 Second-order anisotropy of general symmetry3.1.3 Higher-order anisotropies of nonuniaxial symmetry; 3.1.4 Cubic anisotropy; 3.1.5 Anisotropy coefficients; 3.1.6 Anisotropy fields; 3.2 Models of pair anisotropy; 3.2.1 Dipolar interactions and shape anisotropy; 3.2.2 Demagnetizing factors; 3.2.3 Applicability of the shape-anisotropy model; 3.2.4 The Néel model; 3.3 Spin-orbit coupling and crystal-field interaction; 3.3.1 Relativistic origin of magnetism; 3.3.2 Hydrogen-like atomic wave functions; 3.3.3 Crystal-field interaction; 3.3.4 Quenching; 3.3.5 Spin-orbit coupling3.4 The single-ion model of magnetic anisotropy3.4.1 Rare-earth anisotropy; 3.4.2 Point-charge model; 3.4.3 The superposition model; 3.4.4 Transition-metal anisotropy; 3.5 Other anisotropies; 3.5.1 Magnetoelasticity; 3.5.2 Anisotropic exchange; 3.5.3 Models of surface anisotropy; Exercises; 4 Micromagnetic models; 4.1 Stoner-Wohlfarth model; 4.1.1 Aligned Stoner-Wohlfarth particles; 4.1.2 Angular dependence; 4.1.3 Spin reorientations and other first-order transitions; 4.1.4 Limitations of the Stoner-Wohlfarth model; 4.2 Hysteresis; 4.2.1 Micromagnetic free energy4.2.2 *Magnetostatic self-interaction4.2.3 *Exchange stiffness; 4.2.4 Linearized micromagnetic equations; 4.2.5 Micromagnetic scaling; 4.2.6 Domains and domain walls; 4.3 Coercivity; 4.3.1 Nucleation; 4.3.2 Pinning; 4.3.3 Phenomenological coercivity modeling; 4.4 Grain-boundary models; 4.4.1 Boundary conditions; 4.4.2 Spin structure at grain boundaries; 4.4.3 Models with atomic resolution; 4.4.4 Nanojunctions; Exercises; 5 Finite-temperature magnetism; 5.1 Basic statistical mechanics; 5.1.1 Probability and partition function; 5.1.2 *Fluctuations and response; 5.1.3 Phase transitions5.1.4 Landau theoryModels of magnetism have been pivotal in the understanding and advancement of science and technology. The book is the first one to cover the field as a whole, complementing a rich literature on specific models of magnetism. It is written in an easily accessible style, with a limited amount of mathematics, and covers a wide range of phenomena. - ;For hundreds of years, models of magnetism have been pivotal in the understanding and advancement of science and technology, from the Earth's interpretation as a magnetic dipole to quantum mechanics, statistical physics, and modern nanotechnology. ThisOxford Graduate TextsMagnetismMagnetismMathematical modelsMagnetism.MagnetismMathematical models.538.011Skomski Ralph1961-1642343MiAaPQMiAaPQMiAaPQBOOK9910818572803321Simple models of magnetism3986971UNINA