05672nam 2200745Ia 450 991081842700332120200520144314.01-283-09868-797866130986891-118-02346-31-118-02347-11-118-02343-9(CKB)2550000000032266(EBL)697570(OCoLC)729724626(SSID)ssj0000476962(PQKBManifestationID)11295636(PQKBTitleCode)TC0000476962(PQKBWorkID)10501657(PQKB)10879663(MiAaPQ)EBC697570(MiAaPQ)EBC4030500(Au-PeEL)EBL4030500(CaPaEBR)ebr11107015(CaONFJC)MIL309868(OCoLC)927501377(PPN)185056555(EXLCZ)99255000000003226620101123d2011 uy 0engur|n|---|||||txtccrAn elementary introduction to statistical learning theory /Sanjeev Kulkarni, Gilbert Harman1st ed.Hoboken, N.J. Wileyc20111 online resource (235 p.)Wiley series in probability and statisticsDescription based upon print version of record.0-470-64183-5 Includes bibliographical references and index.An Elementary Introduction to Statistical Learning Theory; Contents; Preface; 1 Introduction: Classification, Learning, Features, and Applications; 1.1 Scope; 1.2 Why Machine Learning?; 1.3 Some Applications; 1.3.1 Image Recognition; 1.3.2 Speech Recognition; 1.3.3 Medical Diagnosis; 1.3.4 Statistical Arbitrage; 1.4 Measurements, Features, and Feature Vectors; 1.5 The Need for Probability; 1.6 Supervised Learning; 1.7 Summary; 1.8 Appendix: Induction; 1.9 Questions; 1.10 References; 2 Probability; 2.1 Probability of Some Basic Events; 2.2 Probabilities of Compound Events2.3 Conditional Probability2.4 Drawing Without Replacement; 2.5 A Classic Birthday Problem; 2.6 Random Variables; 2.7 Expected Value; 2.8 Variance; 2.9 Summary; 2.10 Appendix: Interpretations of Probability; 2.11 Questions; 2.12 References; 3 Probability Densities; 3.1 An Example in Two Dimensions; 3.2 Random Numbers in [0,1]; 3.3 Density Functions; 3.4 Probability Densities in Higher Dimensions; 3.5 Joint and Conditional Densities; 3.6 Expected Value and Variance; 3.7 Laws of Large Numbers; 3.8 Summary; 3.9 Appendix: Measurability; 3.10 Questions; 3.11 References4 The Pattern Recognition Problem4.1 A Simple Example; 4.2 Decision Rules; 4.3 Success Criterion; 4.4 The Best Classifier: Bayes Decision Rule; 4.5 Continuous Features and Densities; 4.6 Summary; 4.7 Appendix: Uncountably Many; 4.8 Questions; 4.9 References; 5 The Optimal Bayes Decision Rule; 5.1 Bayes Theorem; 5.2 Bayes Decision Rule; 5.3 Optimality and Some Comments; 5.4 An Example; 5.5 Bayes Theorem and Decision Rule with Densities; 5.6 Summary; 5.7 Appendix: Defining Conditional Probability; 5.8 Questions; 5.9 References; 6 Learning from Examples; 6.1 Lack of Knowledge of Distributions6.2 Training Data6.3 Assumptions on the Training Data; 6.4 A Brute Force Approach to Learning; 6.5 Curse of Dimensionality, Inductive Bias, and No Free Lunch; 6.6 Summary; 6.7 Appendix: What Sort of Learning?; 6.8 Questions; 6.9 References; 7 The Nearest Neighbor Rule; 7.1 The Nearest Neighbor Rule; 7.2 Performance of the Nearest Neighbor Rule; 7.3 Intuition and Proof Sketch of Performance; 7.4 Using more Neighbors; 7.5 Summary; 7.6 Appendix: When People use Nearest Neighbor Reasoning; 7.6.1 Who Is a Bachelor?; 7.6.2 Legal Reasoning; 7.6.3 Moral Reasoning; 7.7 Questions; 7.8 References8 Kernel Rules8.1 Motivation; 8.2 A Variation on Nearest Neighbor Rules; 8.3 Kernel Rules; 8.4 Universal Consistency of Kernel Rules; 8.5 Potential Functions; 8.6 More General Kernels; 8.7 Summary; 8.8 Appendix: Kernels, Similarity, and Features; 8.9 Questions; 8.10 References; 9 Neural Networks: Perceptrons; 9.1 Multilayer Feedforward Networks; 9.2 Neural Networks for Learning and Classification; 9.3 Perceptrons; 9.3.1 Threshold; 9.4 Learning Rule for Perceptrons; 9.5 Representational Capabilities of Perceptrons; 9.6 Summary; 9.7 Appendix: Models of Mind; 9.8 Questions; 9.9 References10 Multilayer NetworksA thought-provoking look at statistical learning theory and its role in understanding human learning and inductive reasoning A joint endeavor from leading researchers in the fields of philosophy and electrical engineering, An Elementary Introduction to Statistical Learning Theory is a comprehensive and accessible primer on the rapidly evolving fields of statistical pattern recognition and statistical learning theory. Explaining these areas at a level and in a way that is not often found in other books on the topic, the authors present the basic theory behind contemporary maWiley series in probability and statistics.Machine learningStatistical methodsPattern recognition systemsMachine learningStatistical methods.Pattern recognition systems.006.3/1ST 300rvkKulkarni Sanjeev502753Harman Gilbert160614MiAaPQMiAaPQMiAaPQBOOK9910818427003321Elementary introduction to statistical learning theory1734732UNINA