02683nam 2200565 450 991078571120332120230725035051.02-296-25664-3(CKB)2670000000313993(FrPJT)JTL00275330(MH)012522450-8(SSID)ssj0000707579(PQKBManifestationID)12254569(PQKBTitleCode)TC0000707579(PQKBWorkID)10640755(PQKB)10477880(MiAaPQ)EBC6149449(EXLCZ)99267000000031399320200629d2010 uy 0freurcnu||||||||txtccrL'avocat dans la littérature du Moyen Âge et de la Renaissance /Agnès AguerParis :L'Harmattan,[2010]©20101 online resource (201 p. )Approches littéraires"Mémoire établi ... dans le cadre du Master I Lettres modernes, Université de Pau et des Pays de l'Adour, UFR des lettres, langues et sciences humaines".2-296-11888-7 Includes bibliographical references (pages [191]-195).La profession d'avocat réapparaît au Moyen Âge après plusieurs siècles d'oubli. La littérature s'en empare alors pour faire la satire de cet homme de justice représentant d'une classe sociale nouvelle, la bourgeoisie, et de valeurs nouvelles, celles de l'argent. Cet essai étudie la perception du personnage de l'avocat à travers La Farce de Maître Pathelin et les oeuvres d'Eustache Deschamps, Noël du Fail, Bonaventure des Periers, Marguerite de Navarre, François Rabelais, Henri Estienne, Michel de Montaigne, Jacques Grévin et Rémy Belleau.Approches littéraires.French literatureTo 1500History and criticismFrench literature16th centuryHistory and criticismLawyers in literatureFrench literatureHistory and criticism.French literatureHistory and criticism.Lawyers in literature.840.9001Aguer Agnès1567984MiAaPQMiAaPQMiAaPQBOOK9910785711203321L'avocat dans la littérature du Moyen Âge et de la Renaissance3839804UNINAThis Record contains information from the Harvard Library Bibliographic Dataset, which is provided by the Harvard Library under its Bibliographic Dataset Use Terms and includes data made available by, among others the Library of Congress01802nam 2200313z- 450 991081689620332120210111175706.0(CKB)3840000000209585(MiAaPQ)EBC4925134(EXLCZ)99384000000020958520170828c2017uuuu -u- -engLaryngeal physiology for the surgeon and clinician /Clarence T. Sasaki, MD, The Charles W. Ohse Professor of Surgery, Director of the Yale Larynx Laboratory, Director of the Airway Consult Team, Yale School of Medicine, New Haven, CTSecond edition.San Diego, CAPlural Publishing, Inc.20171 online resource (xii, 115 pages) illustrations1-944883-02-9 1-59756-720-5 Phylogeny and function -- Structure and function -- Innervation of the larynx -- Neurophysiology of protective function : influence of anesthesia and level of consciousness -- Neurophysiology of protective function : influence of respiratory phase and proprioceptor control -- Neurophysiology of protective function : influence of hypoxia and hypercapnia -- Neurophysiology of protective function : influence of core body temperature -- Evidence for a laryngeal motor plexus -- Neurophysiology of respiratory function -- Phonatory function -- Neuromuscular basis for ventricular phonation -- Tracheotomy and laryngeal function -- Laryngeal paralysis.LarynxphysiologyElectronic BooksLarynxsurgeryElectronic BooksLarynxphysiologyLarynxsurgery612.2Sasaki Clarence T.1621872BOOK9910816896203321Laryngeal physiology for the surgeon and clinician4064036UNINA04361nam 22005655 450 991062927900332120230831194230.01-4842-6803-210.1007/978-1-4842-6803-2(MiAaPQ)EBC7129846(Au-PeEL)EBL7129846(CKB)25299535600041(OCoLC)1349567952(OCoLC-P)1349567952(CaSebORM)9781484268032(DE-He213)978-1-4842-6803-2(PPN)265860210(EXLCZ)992529953560004120221031d2022 u| 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierIntelligent Autonomous Drones with Cognitive Deep Learning Build AI-Enabled Land Drones with the Raspberry Pi 4 /by David Allen Blubaugh, Steven D. Harbour, Benjamin Sears, Michael J. Findler1st ed. 2022.Berkeley, CA :Apress :Imprint: Apress,2022.1 online resource (519 pages)Print version: Blubaugh, David Allen Intelligent Autonomous Drones with Cognitive Deep Learning Berkeley, CA : Apress L. P.,c2022 9781484268025 Chapter 1. Rover Platform Overview. -Chapter 2. AI Rover System Design and Analysis -- Chapter 3. Installing Linux and Development Tools -- Chapter 4. Building a Simple Virtual Rover -- Chapter 5. Adding Sensors to Our Simulation -- Chapter 6. Sense and Avoidance -- Chapter 7. Navigation, SLAM, and Goals -- Chapter 8. OpenCV and Perception -- Chapter 9. Reinforced Learning -- Chapter 10. Subsumption Cognitive Architecture -- Chapter 11. Geospatial Guidance for AI Rover -- Chapter 12. Noetic ROS Further Examined and Explained -- Chapter 13. Further Considerations -- Appendix A: Bayesian Deep Learning -- Appendix B: Open AI Gym -- Appendix: Introduction to the Future of AI-ML Research.What is an artificial intelligence (AI)-enabled drone and what can it do? Are AI-enabled drones better than human-controlled drones? This book will answer these questions and more, and empower you to develop your own AI-enabled drone. You'll progress from a list of specifications and requirements, in small and iterative steps, which will then lead to the development of Unified Modeling Language (UML) diagrams based in part to the standards established by for the Robotic Operating System (ROS). The ROS architecture has been used to develop land-based drones. This will serve as a reference model for the software architecture of unmanned systems. Using this approach you'll be able to develop a fully autonomous drone that incorporates object-oriented design and cognitive deep learning systems that adapts to multiple simulation environments. These multiple simulation environments will also allow you to further build public trust in the safety of artificial intelligence within drones and small UAS. Ultimately, you'll be able to build a complex system using the standards developed, and create other intelligent systems of similar complexity and capability. Intelligent Autonomous Drones with Cognitive Deep Learning uniquely addresses both deep learning and cognitive deep learning for developing near autonomous drones. You will: Examine the necessary specifications and requirements for AI enabled drones for near-real time and near fully autonomous drones Look at software and hardware requirements Understand unified modeling language (UML) and real-time UML for design Study deep learning neural networks for pattern recognition Review geo-spatial Information for the development of detailed mission planning within these hostile environments.Autonomous robotsDrone aircraftMobile robotsAutomatic controlArtificial intelligenceRaspberry Pi (Computer)Autonomous robots.Drone aircraft.Mobile robotsAutomatic control.Artificial intelligence.Raspberry Pi (Computer)629.892Blubaugh David AllenMiAaPQMiAaPQMiAaPQBOOK9910629279003321Intelligent Autonomous Drones with Cognitive Deep Learning2967765UNINA