11504nam 2200697 a 450 991081663650332120240313211341.01-84973-104-7(CKB)2480000000006818(EBL)1185385(OCoLC)642693382(SSID)ssj0000578412(PQKBManifestationID)12289985(PQKBTitleCode)TC0000578412(PQKBWorkID)10577523(PQKB)10910565(MiAaPQ)EBC1185385(Au-PeEL)EBL1185385(CaPaEBR)ebr10627705(CaONFJC)MIL872013(PPN)198472315(MiAaPQ)EBC7424580(Au-PeEL)EBL7424580(EXLCZ)99248000000000681820120227d2010 uy 0engurcn|||||||||txtccrCompound energy systems optimal operation methods /Shin'ya Obara and Arif Hepbasli1st ed.Cambridge Royal Society of Chemistryc20101 online resource (283 p.)ISSNRSC energy series ;no. 3Description based upon print version of record.1-84973-031-8 Includes bibliographical references and index.Compound Energy Systems -- Contents -- Chapter 1 Background -- 1.1 Distributed Energy System -- 1.2 Independent Microgrid -- 1.3 Distribution Plan of Energy System -- References -- Chapter 2 Operation Analysis of a Compound Energy System - Exhaust Heat Use Plan when Connecting Solar Modules to a Fuel Cell Network -- 2.1 Introduction -- 2.2 The Fuel Cell Energy Network with Solar Modules -- 2.2.1 Urban Area Model -- 2.2.2 Characteristic of the Solar Module -- 2.2.3 Hot-Water Piping Network -- 2.2.4 Facility Scheme -- 2.3 The Path Plan of a Hot-Water Piping Network -- 2.3.1 Heat-Transport Model of a Hot-Water Piping Network -- 2.3.2 Heat-Transfer Model of Hot-Water Piping -- 2.3.3 Heat Energy Balance -- 2.3.4 Analysis Method -- 2.3.5 Analysis Flow -- 2.4 Case Study -- 2.4.1 Specifications of Hot-Water Piping -- 2.4.2 Analysis Procedure -- 2.4.3 Analysis Conditions and Parameters -- 2.5 Analysis Results -- 2.5.1 Results of the Hot-Water Piping Path in FEN that Does not Connect Solar Modules -- 2.5.2 Influences that Changes in the Output of Solar Modules Have on a Hot-Water Piping Network -- 2.6 Conclusions -- Acknowledgments -- Nomenclature -- Subscripts -- The names of buildings -- References -- Chapter 3 Operation of Compound Energy System - Fuel Cell Network System Considering Reduction in Fuel Cell Capacity -- 3.1 Introduction -- 3.2 Load Leveling and Arrangement Plan of Fuel Cell -- 3.2.1 Fuel Cell Network System -- 3.2.2 Power-Generation Characteristics of the Fuel Cell -- 3.2.3 Load Leveling Using Water Electrolysis -- 3.2.4 Distribution of the Fuel Cell -- 3.2.5 Energy-Balance Equation -- 3.2.6 Operating Method of the System -- 3.3 Analysis Method -- 3.3.1 Procedure of Analysis -- 3.3.2 Solution Parameters -- 3.4 Case Study -- 3.4.1 Energy Demand Pattern and Network System -- 3.4.2 Reduction Effect of Fuel Cell Facility Capacity.3.4.3 Route Planning Result of Hot-Water Piping -- 3.4.4 Result of a Fuel Cell Arrangement Plan -- 3.5 Conclusions -- Acknowledgments -- Nomenclature -- Subscripts -- References -- Chapter 4 Power-Independent House Using PEFC - Operation Plan of a Combined Fuel Cell Cogeneration, Solar Module, and Geothermal Heat Pump System -- 4.1 Introduction -- 4.2 Fuel Cell, Solar Modules, and Geothermal Heat Pump Combined System -- 4.2.1 Scheme of Combined System -- 4.2.2 Relational Expression -- 4.2.3 Energy Supply Path -- 4.3 Energy Balance and Objective Function -- 4.3.1 Objective Function of System -- 4.3.2 Multiobjective Optimization -- 4.4 Analysis Results -- 4.4.1 Results of Optimization -- 4.4.2 Equipment Capacity -- 4.4.3 Objective Function and Characteristics of Operation Plan -- 4.5 Conclusions -- Acknowledgments -- Nomenclature -- Greek Symbols -- Subscripts -- References -- Chapter 5 PEFC/Engine Generator Compound Energy System (1) - CO2 Discharge Characteristic of PEFC/Hydrogen-Gas-Engine Hybrid Cogeneration -- 5.1 Introduction -- 5.2 System Scheme -- 5.2.1 HCGS Model -- 5.2.2 Compression of Reformed Gas -- 5.2.3 Operating Method of System -- 5.2.4 Power-Generation-Efficiency Characteristics of HCGS -- 5.3 Equipment Characteristics -- 5.3.1 Output Characteristics of NEG -- 5.3.2 Output Characteristics of PEFC -- 5.3.3 Carbon-Dioxide Emission Characteristics of Boiler -- 5.4 Power and Heat Output Characteristics of HCGS -- 5.4.1 System Operation Map -- 5.4.2 Operation Map of HCGS -- 5.5 Case Study -- 5.5.1 Power and Heat Demand Model -- 5.5.2 Capacity Setup -- 5.5.3 Analysis Method -- 5.6 Results and Discussion -- 5.6.1 Operation Plan of a Representative Day -- 5.6.2 Annual Operation Plan -- 5.7 Conclusion -- Acknowledgments -- Nomenclature -- Greek Symbols -- Subscripts -- Equipment -- References.Chapter 6 PEFC/Engine Generator Compound Energy System (2)-Power-Generation Efficiency of an Independent Microgrid Composed of Distributed Engine Generators -- 6.1 Introduction -- 6.2 System Description -- 6.2.1 Independent Microgrid Configuration -- 6.2.2 Control of the Number of Engine Generators -- 6.3 Diesel Engine Generator System -- 6.3.1 Engine Generator Specifications -- 6.3.2 Output Characteristics of a Small-Scale Diesel Engine Cogeneration System -- 6.4 Case Study -- 6.4.1 Analysis Method -- 6.4.2 Weather Conditions in Sapporo -- 6.4.3 Energy Demand Models -- 6.5 Results and Discussion -- 6.5.1 Load Distribution of the Engine Generator -- 6.5.2 Number of Distributions, and Full Force Power -- 6.5.3 Output Characteristics of Each Engine Generator -- 6.5.4 Power-Generation Efficiency -- 6.5.5 Power Cost -- 6.6 Conclusions -- Acknowledgments -- Nomenclature -- References -- Chapter 7 PEFC/Green Energy Compound System (1) - Operation Planning of a PEFC and Photovoltaics with Prediction of Electricity Production Using GA and Numerical Weather Information -- 7.1 Introduction -- 7.2 System Configurations -- 7.2.1 PEFC and Photovoltaics Compound Microgrid -- 7.2.2 System Operation -- 7.3 Analysis Method -- 7.3.1 Power System -- 7.3.2 Heat Balance -- 7.3.3 Optimal Analysis Using GA -- 7.4 Case Analysis -- 7.4.1 Equipment Specifications -- 7.4.2 GA Parameters -- 7.4.3 Energy Demand Pattern -- 7.4.4 Error of the NWI -- 7.5 Results and Discussion -- 7.5.1 Operation Planning -- 7.5.2 Influence of the Numerical Weather Information Error -- 7.5.3 Fuel Consumption -- 7.6 Conclusions -- Acknowledgements -- Nomenclature -- Greek Symbols -- Subscripts -- References -- Chapter 8 PEFC/Green Energy Compound System (2) - Overall Efficiency of a PEFC with a Bioethanol Solar Reforming System for Individual Houses -- 8.1 Introduction -- 8.2 Material and Method.8.2.1 System Block Diagram -- 8.2.2 Fuel and Reformed Gas System -- 8.2.3 Electric Power System -- 8.2.4 Loss and Auxiliary-Machinery Power -- 8.2.5 Operation Method of the System -- 8.3 Heat-Transfer Analysis -- 8.3.1 Efficiency of Reforming Component -- 8.3.2 Heat Transfer in the Catalyst Layer -- 8.3.3 Reforming Reaction and Analytical Model for the Catalyst Layer -- 8.3.4 Heat Diffusion Equation -- 8.4 Analysis Method -- 8.4.1 Temperature Distribution of the Catalyst Layer, and the Composition Distribution -- 8.4.2 Amount of Exhaust Heat -- 8.5 Operation Case -- 8.5.1 Specification of the Reforming Component -- 8.5.2 Storage of the Reformed Gas -- 8.5.3 Installation Requirements of the System and Demand Characteristic -- 8.6 Results and Discussion -- 8.6.1 Temperature Distribution of the Catalyst Layer -- 8.6.2 Composition of the Process Gas -- 8.6.3 Amount of Hydrogen Generated -- 8.6.4 Production of Electricity and Amount of Purchased Power -- 8.6.5 Operation of the Exhaust Heat -- 8.6.6 Overall Efficiency -- 8.7 Conclusions -- Acknowledgement -- Nomenclature -- Greek Symbols -- Subscripts -- References -- Chapter 9 PEFC/Green Energy Compound System (3) - Fuel Cell Microgrid with Wind-Power Generation -- 9.1 Introduction -- 9.2 Microgrid Model -- 9.3 Response Characteristic of System Configuration Equipment -- 9.3.1 Power-Generation Characteristic of Fuel Cell -- 9.3.2 Output Characteristics of City Gas Reformer -- 9.3.3 Power-Generation Characteristics of Wind-Power Generation -- 9.3.4 Generation Efficiency of the Fuel Cell System -- 9.3.5 Inverter and System Interconnection Device -- 9.4 Control Parameters and Analysis Method -- 9.5 Load Response Characteristics of the Microgrid -- 9.5.1 Step Response -- 9.5.2 Load Response Characteristics of Cold-Region Houses -- 9.5.3 Power-Generation Efficiency -- 9.6 Conclusions -- Acknowledgments.Nomenclature -- References -- Chapter 10 Solar Cell/Diesel Engine Compound System with Production-of-Electricity Prediction -- 10.1 Introduction -- 10.2 Independent Microgrid with Renewable Energy and Battery -- 10.2.1 System Configuration -- 10.2.2 Dynamic Operation Planning -- 10.2.3 Solar Cell System -- 10.3 Power Balance and Objective Function -- 10.3.1 Power Balance -- 10.3.2 Objective Function -- 10.4 Analysis Method -- 10.4.1 Production-of-Electricity Prediction Algorithm of Solar Cell (PAS) -- 10.4.2 Optimization of Dynamic Operation Using a Genetic Algorithm (GA) -- 10.4.3 Analysis Flow of Operation Planning -- 10.5 Case Analysis -- 10.5.1 Analysis System -- 10.5.2 Analysis Conditions -- 10.6 Analysis Results -- 10.6.1 Prediction of Solar Cell Output Power via PAS -- 10.6.2 Prediction Error of PAS, and Operation Method of Generating Equipment -- 10.6.3 Result of Dynamic Operation Planning -- 10.7 Conclusions -- References -- Chapter 11 Dynamic Characteristics of Power for PEFC Compound System -- 11.1 Introduction -- 11.2 System Description -- 11.2.1 Outline of System -- 11.2.2 System-Control Block Diagram -- 11.2.3 The Analysis Method -- 11.3 System Control -- 11.3.1 The Input of the System -- 11.3.2 Control of Startup -- 11.3.3 Control of Heat Output -- 11.3.4 Town-Gas Consumption -- 11.4 Results and Discussion -- 11.4.1 Control Variables and the Response -- 11.4.2 The Response Characteristics of the System -- 11.4.3 Operation of the System by the Selected Control Variables -- 11.5 Conclusions -- Acknowledgments -- Nomenclature -- Equipment Symbols -- References -- Chapter 12 Performance Analysis and Assessment of Compound Energy Systems Using Exergy Analysis Method -- 12.1 Introduction -- 12.2 Energetic and Exergetic Relations -- 12.2.1 Dead (or Reference) State -- 12.2.2 Relations Used.12.3 Application of Exergy Analysis to Various Compound Energy Systems.This book, a distillation of information only touched upon in other books, is aimed at undergraduate and postgraduate students, scientists, engineers and industrialists with an interest in the field.RSC Energy SeriesDistributed generation of electric powerElectric power productionDistributed generation of electric power.Electric power production.333.79Obara Shin'ya1594196Hepbasli Arif1690154MiAaPQMiAaPQMiAaPQBOOK9910816636503321Compound energy systems4065706UNINA