01435nam2 2200337 i 450 SUN001177120100623120000.088-8183-993-820030127d1998 |0itac50 baitaIT|||| |||||ˆ2: ‰Libri 4.-9.Polibiopremesse, traduzioni e note di Fabio Cannatà, Giulio Colesanti, Claudio TartagliniRoma : Newton1998539 p. ; 22 cmEdizione integrale con testo greco a fronte.001SUN00117682001 StoriePolibioa cura di Roberto Nicolai2205 Roma : Newtonc1998210 v. ; 22 cm215 Edizione integrale con testo greco a fronte.SUN0077710HistoriaeRomaSUNL000360PolybiusSUNV008793194056Cannata, FabioSUNV047588Colesanti, GiulioSUNV047589Tartaglini, ClaudioSUNV047590Newton & ComptonSUNV000326650PolibioPolybiusSUNV009109ITSOL20181109RICASUN0011771UFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA00 CONS XVIII.Ab.5 (2) 00 22371 UFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA22371CONS XVIII.Ab.5 (2)paLibri 4.-91401129UNICAMPANIA01171nam--2200397---450-99000318135020331620120706105940.0000318135USA01000318135(ALEPH)000318135USA0100031813520081209d1980----km-y0itay50------baitaIT||||||||001yyBertolt Brechtla vita, l'opera, i tempiFrederic Ewenprefazione di Paolo Grassitraduzione di Andrea D'AnnaMilanoFeltrinelli1980466 p.23 cm<<I>> fatti e le ideeSaggi e Biografie1972001<<I>> fatti e le ideeSaggi e Biografie2001001-------2001Brecht, Bertolt823.912EWEN,Frederic445160GRASSI,PaoloD'ANNA,AndreaITsalbcISBD990003181350203316II.3.B.13462 DSLLBKDSLLDSLL9020081209USA011227MARANO9020120706USA011059Bertolt Brecht184955UNISA04392nam 2200817 450 991081636190332120230803220645.03-11-030531-310.1515/9783110305319(CKB)2550000001169801(EBL)1130283(OCoLC)865329714(SSID)ssj0001061428(PQKBManifestationID)11665970(PQKBTitleCode)TC0001061428(PQKBWorkID)11098844(PQKB)10279310(MiAaPQ)EBC1130283(DE-B1597)206867(OCoLC)1002271016(OCoLC)1004886191(OCoLC)1011475408(OCoLC)1013948484(OCoLC)979584945(OCoLC)987945844(OCoLC)992527173(OCoLC)999366259(DE-B1597)9783110305319(Au-PeEL)EBL1130283(CaPaEBR)ebr10819947(CaONFJC)MIL551786(EXLCZ)99255000000116980120130625h20142014 uy| 0engur|n|---|||||txtccrNonlinear second order elliptic equations involving measures /Moshe Marcus, Laurent VéronBerlin ;Boston :Walter de Gruyter GmbH & Co. KG,[2014]©20141 online resource (264 p.)De Gruyter Series in Nonlinear Analysis and Applications ;21De Gruyter series in nonlinear analysis and applications,0941-813X ;21Description based upon print version of record.3-11-030515-1 1-306-20535-2 Includes bibliographical references and index. Frontmatter -- Preface -- Contents -- Chapter 1. Linear second order elliptic equations with measure data -- Chapter 2. Nonlinear second order elliptic equations with measure data -- Chapter 3. The boundary trace and associated boundary value problems -- Chapter 4. Isolated singularities -- Chapter 5. Classical theory of maximal and large solutions -- Chapter 6. Further results on singularities and large solutions -- Bibliography -- IndexIn the last 40 years semi-linear elliptic equations became a central subject of study in the theory of nonlinear partial differential equations. On the one hand, the interest in this area is of a theoretical nature, due to its deep relations to other branches of mathematics, especially linear and nonlinear harmonic analysis, dynamical systems, differential geometry and probability. On the other hand, this study is of interest because of its applications. Equations of this type come up in various areas such as problems of physics and astrophysics, curvature problems in Riemannian geometry, logistic problems related for instance to population models and, most importantly, the study of branching processes and superdiffusions in the theory of probability. The aim of this book is to present a comprehensive study of boundary value problems for linear and semi-linear second order elliptic equations with measure data. We are particularly interested in semi-linear equations with absorption. The interactions between the diffusion operator and the absorption term give rise to a large class of nonlinear phenomena in the study of which singularities and boundary trace play a central role. This book is accessible to graduate students and researchers with a background in real analysis and partial differential equations.De Gruyter Series in Nonlinear Analysis and ApplicationsDifferential equations, EllipticDifferential equations, NonlinearBoundary trace.Elliptic equations.Large solutions.Singularities.Subcritical nonlinearity.Differential equations, Elliptic.Differential equations, Nonlinear.515/.3533SK 540rvkMarcus M(Moshe),1937-1358648Véron Laurent55416MiAaPQMiAaPQMiAaPQBOOK9910816361903321Nonlinear second order elliptic equations involving measures3914676UNINA