06816nam 2200769 450 991081635450332120200520144314.01-118-67070-11-118-67071-X1-118-67069-8(CKB)3710000000603841(EBL)4454997(SSID)ssj0001622850(PQKBManifestationID)16359363(PQKBTitleCode)TC0001622850(PQKBWorkID)14846303(PQKB)10406557(PQKBManifestationID)16235217(PQKBWorkID)14846379(PQKB)20476960(DLC) 2015047397(Au-PeEL)EBL4454997(CaPaEBR)ebr11176445(CaONFJC)MIL898819(OCoLC)945873898(MiAaPQ)EBC4454997(PPN)255878567(EXLCZ)99371000000060384120160414h20162016 uy 0engur|n|---|||||txtccrElectronic structure calculations on graphics processing units from quantum chemistry to condensed matter physics /Ross C. Walker and Andreas W. Goetz, editorsWest Sussex, England :Wiley,2016.©20161 online resource (448 p.)Description based upon print version of record.1-118-66178-8 Includes bibliographical references and index.Title Page; Copyright; Table of Contents; List of Contributors; Preface; Acknowledgments; Glossary; Abbreviations - Scientific; Abbreviations - Technical; Chapter 1: Why Graphics Processing Units; 1.1 A Historical Perspective of Parallel Computing; 1.2 The Rise of the GPU; 1.3 Parallel Computing on Central Processing Units; 1.4 Parallel Computing on Graphics Processing Units; 1.5 GPU-Accelerated Applications; References; Chapter 2: GPUs: Hardware to Software; 2.1 Basic GPU Terminology; 2.2 Architecture of GPUs; 2.3 CUDA Programming Model; 2.4 Programming and Optimization Concepts2.5 Software Libraries for GPUs2.6 Special Features of CUDA-Enabled GPUs; References; Chapter 3: Overview of Electronic Structure Methods; 3.1 Introduction; 3.2 Hartree-Fock Theory; 3.3 Density Functional Theory; 3.4 Basis Sets; 3.5 Semiempirical Methods; 3.6 Density Functional Tight Binding; 3.7 Wave Function-Based Electron Correlation Methods; Acknowledgments; References; Chapter 4: Gaussian Basis Set Hartree-Fock, Density Functional Theory, and Beyond on GPUs; 4.1 Quantum Chemistry Review; 4.2 Hardware and CUDA Overview; 4.3 GPU ERI Evaluation; 4.4 Integral-Direct Fock Construction on GPUs4.5 Precision Considerations4.6 Post-SCF Methods; 4.7 Example Calculations; 4.8 Conclusions and Outlook; References; Chapter 5: GPU Acceleration for Density Functional Theory with Slater-Type Orbitals; 5.1 Background; 5.2 Theory and CPU Implementation; 5.3 GPU Implementation; 5.4 Conclusion; References; Chapter 6: Wavelet-Based Density Functional Theory on Massively Parallel Hybrid Architectures; 6.1 Introductory Remarks on Wavelet Basis Sets for Density Functional Theory Implementations; 6.2 Operators in Wavelet Basis Sets; 6.3 Parallelization; 6.4 GPU Architecture6.5 Conclusions and OutlookReferences; Chapter 7: Plane-Wave Density Functional Theory; 7.1 Introduction; 7.2 Theoretical Background; 7.3 Implementation; 7.4 Optimizations; 7.5 Performance Examples; 7.6 Exact Exchange with Plane Waves; 7.7 Summary and Outlook; 7.8 Acknowledgments; References; Appendix A: Definitions and Conventions; Appendix B: Example Kernels; Chapter 8: GPU-Accelerated Sparse Matrix-Matrix Multiplication for Linear Scaling Density Functional Theory; 8.1 Introduction; 8.2 Software Architecture for GPU-Acceleration; 8.3 Maximizing Asynchronous Progress8.4 Libcusmm: GPU Accelerated Small Matrix Multiplications8.5 Benchmarks and Conclusions; Acknowledgments; References; Chapter 9: Grid-Based Projector-Augmented Wave Method; 9.1 Introduction; 9.2 General Overview; 9.3 Using GPUs in Ground-State Calculations; 9.4 Time-Dependent Density Functional Theory; 9.5 Random Phase Approximation for the Correlation Energy; 9.6 Summary and Outlook; Acknowledgments; References; Chapter 10: Application of Graphics Processing Units to Accelerate Real-Space Density Functional Theory and Time-Dependent Density Functional Theory Calculations; 10.1 Introduction10.2 The Real-Space Representation"Electronic Structure Calculations on Graphics Processing Units: From Quantum Chemistry to Condensed Matter Physics provides an overview of computing on graphics processing units (GPUs), a brief introduction to GPU programming, and the latest examples of code developments and applications for the most widely used electronic structure methods. The book covers all commonly used basis sets including localized Gaussian and Slater type basis functions, plane waves, wavelets and real-space grid-based approaches. The chapters expose details on the calculation of two-electron integrals, exchange-correlation quadrature, Fock matrix formation, solution of the self-consistent field equations, calculation of nuclear gradients to obtain forces, and methods to treat excited states within DFT. Other chapters focus on semiempirical and correlated wave function methods including density fitted second order Moshlasser-Plesset perturbation theory and both iterative and perturbative single- and multireference coupled cluster methods. Electronic Structure Calculations on Graphics Processing Units: From Quantum Chemistry to Condensed Matter Physics presents an accessible overview of the field for graduate students and senior researchers of theoretical and computational chemistry, condensed matter physics and materials science, as well as software developers looking for an entry point into the realm of GPU and hybrid GPU/CPU programming for electronic structure calculations"--Provided by publisher.Electronic structureComputer simulationElectronic structureMathematical modelsGraphics processing unitsProgrammingMathematical physicsElectronic structureComputer simulation.Electronic structureMathematical models.Graphics processing unitsProgramming.Mathematical physics.621.39/96SCI013050bisacshWalker Ross C.Goetz Andreas W.MiAaPQMiAaPQMiAaPQBOOK9910816354503321Electronic structure calculations on graphics processing units3994508UNINA