04445nam 2200697 a 450 991081523890332120200520144314.01-118-60104-11-118-60114-91-118-60111-41-299-18753-6(CKB)2550000001005888(EBL)1124704(SSID)ssj0000832003(PQKBManifestationID)11442617(PQKBTitleCode)TC0000832003(PQKBWorkID)10882213(PQKB)11586982(Au-PeEL)EBL1124704(CaPaEBR)ebr10660607(CaONFJC)MIL450003(CaSebORM)9781118601143(MiAaPQ)EBC1124704(OCoLC)828672185(EXLCZ)99255000000100588820110316d2011 uy 0engur|n|---|||||txtccrSilicon technologies[electronic resource] ion implantation and thermal treatment /edited by Annie Baudrant1st editionLondon ISTE ;Hoboken, N.J. Wiley20111 online resource (357 p.)ISTEDescription based upon print version of record.1-84821-231-3 Includes bibliographical references and index.Cover; Title Page; Copyright Page; Table of Contents; Preface; Chapter 1. Silicon and Silicon Carbide Oxidation; 1.1. Introduction; 1.2. Overview of the various oxidation techniques; 1.2.1. General information; 1.2.2. Most frequently used methods in the semiconductor industry; 1.2.3. Other methods; 1.3. Some physical properties of silica; 1.3.1. The silica structure; 1.3.2. Three useful parameters of silica; 1.3.3. Transport properties in silica; 1.4. Equations of atomic transport during oxidation; 1.4.1. Transport equations in the general case1.5.5. Experimental results and conclusions on the transport mechanisms during the anodic oxidation of silicon1.5.6. Important experimental results from dry SiC thermal oxidation; 1.6. Transport equations in the case of thermal oxidation; 1.6.1. General information on flux and on growth kinetics; 1.6.2. Flux calculation for neutral mobile species; 1.6.3. Flux calculation for ion mobile species; 1.7. Deal and Grove theory of thermal oxidation; 1.7.1. Flux calculation; 1.7.2. Growth kinetics equations; 1.7.3. Remarks on the fluctuations of the oxidation constants kP and kL1.7.4. Determination of the oxidation parameters from experimental results1.7.5. Confrontation of the Deal and Grove theory with experimental results; 1.7.6. Conclusions on the Deal and Grove theory; 1.8. Theory of thermal oxidation under water vapor of silicon; 1.8.1. Concentration profiles expected for H2O; 1.8.2. Concentration profiles expected for the OH groups; 1.8.3. Concentration profiles expected for H2; 1.8.4. Concentration profiles expected for H; 1.8.5. Comparison of the expected and the experimental profiles; 1.8.6. Wolters theory1.9. Kinetics of growth in O2 for oxide films < 30 nm1.9.1. Introduction; 1.9.2. Oxidation models of thin films; 1.9.3. Case of ultra-thin films (< 5 nm); 1.9.4. On line simulator; 1.9.5. Kinetics and models of SiC oxidation; 1.10. Fluctuations of the oxidation constants under experimental conditions; 1.10.1. Role of the pressure; 1.10.2. Role of the temperature; 1.10.3. Role of the crystal direction; 1.10.4. Role of doping; 1.11. Conclusion; 1.12. Bibliography; Chapter 2. Ion Implantation; 2.1. Introduction; 2.2. Ion implanters; 2.2.1. General description; 2.2.2. Ion sources2.2.3. Mass analysis and beam opticsThe main purpose of this book is to remind new engineers in silicon foundry, the fundamental physical and chemical rules in major Front end treatments: oxidation, epitaxy, ion implantation and impurities diffusion.ISTESemiconductor dopingIon implantationSemiconductorsHeat treatmentSemiconductor doping.Ion implantation.SemiconductorsHeat treatment.621.3815/2Baudrant Annie1717590MiAaPQMiAaPQMiAaPQBOOK9910815238903321Silicon technologies4113942UNINA