01037nam 2200349 450 991013123290332120240207180237.01-4123-5653-9(CKB)3680000000167040(NjHacI)993680000000167040(EXLCZ)99368000000016704020240207d2007 uy 0freur|||||||||||txtrdacontentcrdamediacrrdacarrierL'éducation artistique et la société post-industrielle /Marcel RiouxChicoutimi :J.-M. Tremblay,2007.1 online resourceClassiques des sciences socialesClassiques des sciences sociales.GeographyCongressesGeography910Rioux Marcel856488NjHacINjHaclBOOK9910131232903321L'éducation artistique et la société post-industrielle2210567UNINA05820nam 2200829 a 450 991081523870332120240313144207.097811186029111118602919978111860285011186028549781118602836111860283897812991878011299187803(CKB)2550000001005910(EBL)1124673(OCoLC)828298911(SSID)ssj0000831963(PQKBManifestationID)11421096(PQKBTitleCode)TC0000831963(PQKBWorkID)10881247(PQKB)10765859(OCoLC)842860158(MiAaPQ)EBC1124673(Au-PeEL)EBL1124673(CaPaEBR)ebr10660582(CaONFJC)MIL450030(PPN)181711699(OCoLC)742234193(FINmELB)ELB178785(Perlego)1011219(EXLCZ)99255000000100591020110719d2011 uy 0engur|n|---|||||txtccrNetwork performance analysis /Thomas Bonald, Mathieu Feuillet1st ed.London ISTE ;Hoboken, N.J. John Wiley20111 online resource (267 p.)ISTEDescription based upon print version of record.9781848213128 1848213123 Includes bibliographical references and index.Cover; Title Page; Copyright Page; Table of Contents; Preface; Chapter 1. Introduction; 1.1. Motivation; 1.2. Networks; 1.3. Traffic; 1.4. Queues; 1.5. Structure of the book; 1.6. Bibliography; Chapter 2. Exponential Distribution; 2.1. Definition; 2.2. Discrete analog; 2.3. An amnesic distribution; 2.4. Minimum of exponential variables; 2.5. Sum of exponential variables; 2.6. Random sum of exponential variables; 2.7. A limiting distribution; 2.8. A ""very"" random variable; 2.9. Exercises; 2.10. Solution to the exercises; Chapter 3. Poisson Processes; 3.1. Definition; 3.2. Discrete analog3.3. An amnesic process3.4. Distribution of the points of a Poisson process; 3.5. Superposition of Poisson processes; 3.6. Subdivision of a Poisson process; 3.7. A limiting process; 3.8. A ""very"" random process; 3.9. Exercises; 3.10. Solution to the exercises; Chapter 4. Markov Chains; 4.1. Definition; 4.2. Transition probabilities; 4.3. Periodicity; 4.4. Balance equations; 4.5. Stationary measure; 4.6. Stability and ergodicity; 4.7. Finite state space; 4.8. Recurrence and transience; 4.9. Frequency of transition; 4.10. Formula of conditional transitions; 4.11. Chain in reverse time4.12. Reversibility4.13. Kolmogorov's criterion; 4.14. Truncation of a Markov chain; 4.15. Random walk; 4.16. Exercises; 4.17. Solution to the exercises; Chapter 5. Markov Processes; 5.1. Definition; 5.2. Transition rates; 5.3. Discrete analog; 5.4. Balance equations; 5.5. Stationary measure; 5.6. Stability and ergodicity; 5.7. Recurrence and transience; 5.8. Frequency of transition; 5.9. Virtual transitions; 5.10. Embedded chain; 5.11. Formula of conditional transitions; 5.12. Process in reverse time; 5.13. Reversibility; 5.14. Kolmogorov's criterion; 5.15. Truncation of a reversible process5.16. Product of independent Markov processes5.17. Birth-death processes; 5.18. Exercises; 5.19. Solution to the exercises; Chapter 6. Queues; 6.1. Kendall's notation; 6.2. Traffic and load; 6.3. Service discipline; 6.4. Basic queues; 6.5. A general queue; 6.6. Little's formula; 6.7. PASTA property; 6.8. Insensitivity; 6.9. Pollaczek-Khinchin's formula; 6.10. The observer paradox; 6.11. Exercises; 6.12. Solution to the exercises; Chapter 7. Queuing Networks; 7.1. Jackson networks; 7.2. Traffic equations; 7.3. Stationary distribution; 7.4. MUSTA property; 7.5. Closed networks7.6. Whittle networks7.7. Kelly networks; 7.8. Exercises; 7.9. Solution to the exercises; Chapter 8. Circuit Traffic; 8.1. Erlang's model; 8.2. Erlang's formula; 8.3. Engset's formula; 8.3.1. Model without blocking; 8.3.2. Model with blocking; 8.4. Erlang's waiting formula; 8.4.1. Waiting probability; 8.4.2. Mean waiting time; 8.5. The multiclass Erlang model; 8.6. Kaufman-Roberts formula; 8.7. Network models; 8.8. Decoupling approximation; 8.9. Exercises; 8.10. Solutions to the exercises; Chapter 9. Real-time Traffic; 9.1. Flows and packets; 9.2. Packet-level model; 9.3. Flow-level model9.4. Congestion rateThe book presents some key mathematical tools for the performance analysis of communication networks and computer systems.Communication networks and computer systems have become extremely complex. The statistical resource sharing induced by the random behavior of users and the underlying protocols and algorithms may affect Quality of Service.This book introduces the main results of queuing theory that are useful for analyzing the performance of these systems. These mathematical tools are key to the development of robust dimensioning rules and engineering methods. A number of examples iISTEComputer networksEvaluationNetwork performance (Telecommunication)Queuing theoryComputer networksEvaluation.Network performance (Telecommunication)Queuing theory.621.382Bonald Thomas1717588Feuillet Mathieu1717589MiAaPQMiAaPQMiAaPQBOOK9910815238703321Network performance analysis4113940UNINA01648nam0 22004333i 450 VAN0029510320250915043447.933N978146120791720250617d1995 |0itac50 baengUS|||| |||||i e bcrProbability TheoryAn Advanced CourseVivek S. BorkarNew YorkSpringer1995x, 145 p.24 cm001VAN000245062001 Universitext210 Berlin [etc]Springer1930-60-XXProbability theory and stochastic processes [MSC 2020]VANC020428MFMarkov ChainsKW:KMarkov propertyKW:KMartingalesKW:KOperations ResearchKW:KProbability TheoryKW:KRandom variablesKW:KStochastic processesKW:KUniform integrabilityKW:KUSNew YorkVANL000011BorkarVivek S.VANV231731472615Springer <editore>VANV108073650ITSOL20250919RICAhttps://doi.org/10.1007/978-1-4612-0791-7E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICAIT-CE0120VAN08NVAN00295103BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08DLOAD e-Book 11961 08eMF11961 20250728 Probability theory924361UNICAMPANIA