02085nam2 22003613i 450 USM125661020231121125915.0311004915520160623e19771898||||0itac50 balatgrcdez01i xxxe z01n˜3: œInscriptiones Symes Teutlussae Teli Nisyri Astypalaeae Anaphes Therae et Therasiae Pholegandri Cimoli Meliconsilio et auctoritate Academiae Litterarum Regiae Borussicae edidit Fridericus Hiller de GaertringenBerolini: W. de Gruyter1977VIII, 272 p., 2 c. di tav., 2 c. di tav. ripieg.: ill.39 cmRipr. dell'ed.: Berolini, Reimerum, 1898.001RMS00880812001 ˜12: œInscriptiones graecae insularum maris Aegaei praeter Delum3Hiller von Gaertringen, Friedrich <1864-1947>SBLV302886Hiller, Fridericus : de GaertringenSBLV069853Hiller von Gaertringen, Friedrich <1864-1947>Hiller, Friedrich : von GaertringenSBNV005004Hiller von Gaertringen, Friedrich <1864-1947>Hiller Gaertringen, Friedrich : vonSBNV005005Hiller von Gaertringen, Friedrich <1864-1947>Gaertringen, Friedrich Hiller : vonSBNV005006Hiller von Gaertringen, Friedrich <1864-1947>Hiller De Gaertringen, FriedrichSBNV095162Hiller von Gaertringen, Friedrich <1864-1947>Hiller von Gaertringen, F.SBNV095163Hiller von Gaertringen, Friedrich <1864-1947>ITIT-0120160623IT-FR0017 Biblioteca umanistica Giorgio ApreaFR0017 USM1256610Biblioteca umanistica Giorgio Aprea 52FLS S.Sij.FE2/I.G.XII.1-3 Suppl. 52VM 0000189325 VM barcode:LET5457. - Inventario:23135. - Fondo:SIJPVMA 2002121820121204 52Inscriptiones Symes Teutlussae Teli Nisyri Astypalaeae Anaphes Therae et Therasiae Pholegandri Cimoli Meli1108534UNICAS05260nam 2200673 450 991081472860332120230126211827.01-60650-489-410.5643/9781606504895(CKB)2670000000587622(EBL)1899726(SSID)ssj0001539245(PQKBManifestationID)11909706(PQKBTitleCode)TC0001539245(PQKBWorkID)11530969(PQKB)11295755(OCoLC)900011556(CaBNvSL)swl00404578(MiAaPQ)EBC1899726(Au-PeEL)EBL1899726(CaPaEBR)ebr11001852(CaONFJC)MIL682023(OCoLC)898755103(EXLCZ)99267000000058762220190123d2015 uy 0engur|n|---|||||txtccrNumerical structural analysis /Steven E. O'Hara, Carisa H. RammingNew York :Momentum Press,[2015]©20151 online resource (302 p.)Sustainable structural systems collectionDescription based upon print version of record.1-60650-488-6 1-322-50741-4 Includes bibliographical references and index.1. Roots of algebraic and transcendental equations -- 1.1 Equations -- 1.2 Polynomials -- 1.3 Descartes' rule -- 1.4 Synthetic division -- 1.5 Incremental search method -- 1.6 Refined incremental search method -- 1.7 Bisection method -- 1.8 Method of false position or linear interpolation -- 1.9 Secant method -- 1.10 Newton-Raphson method or Newton's tangent -- 1.11 Newton's second order method -- 1.12 Graeffe's root squaring method -- 1.13 Bairstow's method -- References -- 2. Solutions of simultaneous linear algebraic equations using matrix algebra -- 2.1 Simultaneous equations -- 2.2 Matrices -- 2.3 Matrix operations -- 2.4 Cramer's rule -- 2.5 Method of adjoints or cofactor method -- 2.6 Gaussian elimination method -- 2.7 Gauss-Jordan elimination method -- 2.8 Improved Gauss-Jordan elimination method -- 2.9 Cholesky decomposition method -- 2.10 Error equations -- 2.11 Matrix inversion method -- 2.12 Gauss-Seidel iteration method -- 2.13 Eigenvalues by Cramer's rule -- 2.14 Faddeev-Leverrier method -- 2.15 Power method or iteration method -- References -- 3. Numerical integration and differentiation -- 3.1 Trapezoidal rule -- 3.2 Romberg integration -- 3.3 Simpson's rule -- 3.4 Gaussian quadrature -- 3.5 Double integration by Simpson's one-third rule -- 3.6 Double integration by Gaussian quadrature -- 3.7 Taylor series polynomial expansion -- 3.8 Difference operators by Taylor series expansion -- 3.9 Numeric modeling with difference operators -- 3.10 Partial differential equation difference operators -- 3.11 Numeric modeling with partial difference operators -- References -- 4. Matrix structural stiffness -- 4.1 Matrix transformations and coordinate systems -- 4.2 Rotation matrix -- 4.3 Transmission matrix -- 4.4 Area moment method -- 4.5 Conjugate beam method -- 4.6 Virtual work -- 4.7 Castigliano's theorems -- 4.8 Slope-deflection method -- 4.9 Moment-distribution method -- 4.10 Elastic member stiffness, X-Z system -- 4.11 Elastic member stiffness, X-Y system -- 4.12 Elastic member stiffness, 3-D system -- 4.13 Global joint stiffness -- References -- 5. Advanced structural stiffness -- 5.1 Member end releases, X-Z system -- 5.2 Member end releases, X-Y system -- 5.3 Member end releases, 3-D system -- 5.4 Non-prismatic members -- 5.5 Shear stiffness, X-Z system -- 5.6 Shear stiffness, X-Y system -- 5.7 Shear stiffness, 3-D system -- 5.8 Geometric stiffness, X-Y system -- 5.9 Geometric stiffness, X-Z system -- 5.10 Geometric stiffness, 3-D system -- 5.11 Geometric and shear stiffness -- 5.12 Torsion -- 5.13 Sub-structuring -- References -- About the authors -- Index.As structural engineers move further into the age of digital computation and rely more heavily on computers to solve problems, it remains paramount that they understand the basic mathematics and engineering principles used to design and analyze building structures. The analysis of complex structural systems involves the knowledge of science, technology, engineering, and math to design and develop efficient and economical buildings and other structures. The link between the basic concepts and application to real world problems is one of the most challenging learning endeavors that structural engineers face. A thorough understanding of the analysis procedures should lead to successful structures.Sustainable structural systems collection.Structural analysis (Engineering)Mathematical modelsStructural analysis (Engineering)Mathematical models.624.171015118O'Hara Steven E.1612950Ramming Carisa H.MiAaPQMiAaPQMiAaPQBOOK9910814728603321Numerical structural analysis3942009UNINA