04198nam 2200541Ia 450 991081377620332120200520144314.01-61761-951-5(CKB)2550000001040577(EBL)3017677(SSID)ssj0001074061(PQKBManifestationID)11600543(PQKBTitleCode)TC0001074061(PQKBWorkID)11187178(PQKB)10837042(MiAaPQ)EBC3017677(Au-PeEL)EBL3017677(CaPaEBR)ebr10654648(OCoLC)923653238(EXLCZ)99255000000104057720021011d2010 uy 0engur|n|---|||||txtccrAdvances in laser and optics researchVolume 3 /William T. Arkin, editor1st ed.New York Nova Sciencec20101 online resource (208 p.)Advances in Laser and Optics Research ;v.3Description based upon print version of record.1-59033-855-3 Includes bibliographical references and index.CONTENTS -- PREFACE -- ADVANCES IN COPPER LASER TECHNOLOGY:KINETIC ENHANCEMENT -- 1. Introduction -- 2. Background -- 2.1. Role of Pre-Pulse Electron Density -- 2.2. Engineering the Pre-Pulse Electron Density -- 3. Operating Characteristics of KE-CVLs -- 3.1. Output Power and Efficiency -- 3.2. Pulse Rate Scaling of KE-CVLS -- 3.3. Specific Average-Output Power Scaling -- 3.4. Temporal Characteristics of KE-CVL Output -- 3.5. Spatial Characteristics of KE-CVL Output -- 3.6. High Beam Quality Operation of KE-CVLs -- 4. Diagnostics of Kinetically Enhanced CVLs -- 4.1. Copper Density Measurement -- 4.2. Computer Modelling of KE-CVLs -- 5. Operation of KE-CVLS in Oscillator-Amplifier Configuration -- 6. High Power UV Generation from KE-CVLs -- MERGING QUANTUM THEORY INTO CLASSICALPHYSICS -- Abstract -- 1. Introduction -- 2. Comparison of Classical and Quantum Electrodynamics -- 2.1. Modes of the Electromagnetic Waves -- 2.2. Elementary Light-Matter Interaction in Classical Optics -- 2.3. The Classical Zero Point Field -- 2.4. The Zero Point Field and the Detection of Low Level Light -- 2.5. Spontaneous Emission and Absorption: Einstein's Coefficients -- 2.6. Mechanism of Emission and Absorption of a Photon -- 2.7. Comparison of Quantum and Classical Electrodynamics -- 3. Some Properties of Nonlinear Waves: The (3+0)D Solitons -- 3.1. The Filaments of Light -- 3.2. Perturbation of a Filament by a Magnetic Nonlinearity -- 4. Tentative Setting of a Classical Theory Including the Important Quantum Results -- 4.1. Is Matter Made of Electromagnetic (3+0)D Solitons? -- 4.2. Inserting the Quantum Calculation of Energies into the Classical Theory -- 5. Conclusion -- A POSSIBLE SCENARIO FOR VOLUMETRICDISPLAY THROUGH NANOPARTICLE SUSPENSIONS -- STATISTICAL PROPERTIES OF NONLINEARPHASE NOISE -- 1. Introduction -- 2. Joint Statistics of Nonlinear Phase Noise and Electric Field -- 2.1. Normalization of Nonlinear Phase Noise -- 2.2. Series Expansion -- 2.3. Joint Characteristic Function -- 3. The Probability Density Function of Nonlinear Phase Noise -- 4. Some Joint Characteristic Functions -- 4.1. Joint Characteristic Function of Nonlinear Phase Noise and Received Intensity -- 4.2. Joint Characteristic Function of Nonlinear Phase Noise and Phase of Amplifier Noise -- 5. Error Probability of DPSK Signal -- 5.1. Phase Distribution -- 5.2. Error Probability -- 5.3. Approximation of Independence -- 5.4. Numerical Results -- 6. Compensation of Nonlinear Phase Noise -- 6.1. Linear Compensation -- 6.2. Nonlinear Compensation.Advances in Laser and Optics ResearchLasersResearchOpticsResearchLasersResearch.OpticsResearch.Arkin William T1641728MiAaPQMiAaPQMiAaPQBOOK9910813776203321Advances in laser and optics research3986036UNINA