08518nam 2200481 450 991058330770332120190522135309.00-08-102415-00-08-102414-2(CKB)4100000007108839(Au-PeEL)EBL5570788(OCoLC)1065062225(MiAaPQ)EBC5570788(PPN)240177894(EXLCZ)99410000000710883920181124d2019 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierAdvanced applications in manufacturing engineering /edited by Mangey Ram, J. Paulo DavimDuxford, England :Woodhead Publishing,2019.1 online resource (280 pages)Woodhead Publishing in materialsIncludes index.Cover -- Title page -- Copyright -- Contents -- List of Contributors -- Editors' Biography -- Preface -- Acknowledgment -- Chapter 1 - Methodology for Selection and Application of Eco-Efficiency Indicators Fostering Decision-Making and Communicat... -- 1.1 - Motivations and brief chapter overview -- 1.2 - Literature survey and contributions -- 1.3 - Suggested methodology and its application -- 1.3.1 - Overview of the proposed methodology -- 1.3.2 - Step (1)-Selection of indicators for the injection molding sector -- 1.3.2.1 - Key environmental performance indicators -- 1.3.2.1.1 - The ISO 14031 standard and the list of EPIs -- 1.3.2.1.2 - The WBCSD classification of EPIs -- 1.3.2.1.3 - The selection of the KEPIs -- 1.3.2.2 - Value indicators -- 1.3.2.2.1 - The selection of the product-related value indicators -- 1.3.3 - Step (2)-Application to a case study -- 1.3.3.1 - Case study description -- 1.3.3.2 - Environmental profile -- 1.3.3.3 - Value profile -- 1.3.3.4 - Eco-efficiency ratios' profile -- 1.4 - Conclusions -- 1.5 - Appendix A -- References -- Further Readings -- Chapter 2 - Fabrication of Magnetic Tunnel Junctions -- 2.1 - Magnetic tunnel junction -- 2.2 - Junction size -- 2.3 - Growth of multilayer structure -- 2.4 - Molecular beam epitaxy (MBE) -- 2.4.1 - E-beam evaporation -- 2.4.2 - Sputtering deposition -- 2.4.3 - Ion beam sputtering deposition -- 2.5 - Lithography -- 2.5.1 - Photolithography -- 2.5.2 - E-beam lithography -- 2.6 - Patterning of Fe/MgO/Fe system -- 2.7 - Fabrication of device using pseudo/metal masking procedure -- 2.8 - Conclusions -- Acknowledgment -- References -- Chapter 3 - Effect of Equipment's Failure on Gas Turbine Power Plant -- 3.1 - Introduction -- 3.2 - Mathematical modeling details -- 3.2.1 - Notations -- 3.2.2 - Assumptions -- 3.2.3 - System description -- 3.2.4 - Formulation and solution of the model.3.3 - Particular cases and their numerical computation -- 3.3.1 - Availability analysis -- 3.3.2. Reliability analysis -- 3.4 - Results, discussion, and conclusion -- References -- Chapter 4 - Additive Manufacturing in Injection Molds-Life Cycle Engineering for Technology Selection -- 4.1 - Introduction -- 4.2 - Additive manufacturing in mold manufacturing -- 4.3 - Means and methods -- 4.3.1 - Case study -- 4.3.2 - Conformal cooling technologies -- 4.3.3 - Methods -- 4.4 - The process-based models and their outputs -- 4.4.1 - Process-based model technical relations and assumptions -- 4.4.1.1 - Brazing-alternative-mold produced by Vacuum Furnace Brazing -- 4.4.1.2 - Laser-alternative-mold produced by Direct Metal Laser Sintering -- 4.4.1.3 - Conventional-alternative-mold produced by conventional technologies -- 4.4.1.4 - Injection molding phase -- 4.4.1.5 - End of life phase -- 4.4.2 - Discussion of results -- 4.5 - Results of Life Cycle Engineering assessment -- 4.5.1 - Economic and environmental assessment -- 4.5.2 - Technical assessment -- 4.5.3 - The Life Cycle Engineering-integrated analysis -- 4.6 - Conclusion -- 4.7 - Appendix 1 -- References -- Further Reading -- Chapter 5 - Manufacturing Engineering Requirements in the Early Stages of New Product Development-A Case Study in Two Assem... -- 5.1 - Introduction -- 5.2 - Theoretical framework -- 5.2.1 - Early stages of NPD -- 5.2.2 - Assembly requirements for a new product -- 5.2.3 - Mechanisms, methods, and tools for DFM -- 5.3 - Research approach -- 5.3.1 - Case study method -- 5.3.2 - Data collection -- 5.3.3 - Data analysis -- 5.4 - Empirical findings -- 5.4.1 - Case A: Exhaust component in heavy vehicle industry -- 5.4.1.1 - The NPD process -- 5.4.1.2 - Considered requirements from manufacturing -- 5.4.1.3 - Mechanisms used for the verification and communication of requirements.5.4.2 - Case B: engine component in the automotive industry -- 5.4.2.1 - The NPD process -- 5.4.2.2 - Considered requirements from manufacturing -- 5.4.2.3 - Mechanisms used for verification and communication in case B -- 5.5 - Analysis and discussion -- 5.5.1 - The applied development processes -- 5.5.2 - Requirement types considered -- 5.5.3 - Mechanisms used for verification and communication -- 5.5.4 - Toward a future classification and support structure for manufacturing requirements -- 5.6 - Conclusion -- References -- Chapter 6 - Development of SMEs Coping Model for Operations Advancement in Manufacturing Technology -- 6.1 - Introduction -- 6.2 - Advances in Manufacturing Technology and its tools -- 6.3 - Small and medium scale industries -- 6.3.1 - Characteristics of small and medium scale industries -- 6.3.2 - Reconfigurable/modular/flexible manufacturing -- 6.3.3 - Additive manufacturing/rapid prototyping -- 6.3.4 - Lean manufacturing -- 6.3.5 - Just-In-Time (JIT) manufacturing -- 6.4 - Coping models for SMES placement in AMT -- 6.4.1 - Coping model flowchart formulation -- 6.4.2 - Case study scenario -- 6.5 - Conclusion -- References -- Chapter 7 - Applications of Computational Methods in Manufacturing Processes -- 7.1 - Introduction -- 7.2 - Meshfree methods -- 7.2.1 - Principle of MMs -- 7.2.2 - Basic approximations and procedure -- 7.2.3 - Classification of MMs -- 7.2.3.1 - Based on strong form formulation -- 7.2.3.1.1 - Smooth particle hydrodynamics -- 7.2.3.1.2 - Reproducing kernel particle method -- 7.2.3.1.3 - Collocation method -- 7.2.3.2 - Based on weak form formulation -- 7.2.3.2.1 - Element free Galerkin method -- 7.2.3.2.2 - Meshfree Petrov-Galerkin method -- 7.2.3.2.3 - Point interpolation method -- 7.2.3.3 - Based on weak-strong form formulation -- 7.3 - Application of computational methods to manufacturing processes.7.3.1 - Machining -- 7.3.1.1 - Application of MMs to cutting tool analysis -- 7.3.2 - Welding -- 7.3.3 - Casting -- 7.3.4 - Forming -- 7.4 - Numerical implementation -- 7.4.1 - Mathematical formulation for FGM -- 7.4.1.1 - Computation of thermal interaction integral -- 7.4.2 - Results and discussions -- 7.4.2.1 - TBC with single edge crack -- 7.4.2.2 - Simulation of large deformation using die pressing -- 7.5 - Conclusions -- Acknowledgments -- References -- Chapter 8 - Study of Turbulent Plane Circular Jet for Modulation of Recirculation Zone Behind a Cubical Obstruction -- 8.1 - Introduction -- 8.2 - Formulation of the problem -- 8.2.1 - Model description -- 8.2.2 - Boundary conditions -- 8.2.3 - Governing equations -- 8.2.4 - Turbulence model -- 8.2.4.1 - Standard model -- 8.2.5 - Numerical procedure -- 8.3 - Result and discussion -- 8.3.1 - Velocity profile validation with log law -- 8.3.2 - Validation with experimental outcomes -- 8.3.3 - Velocity profile -- 8.3.4 - Contour plot for velocity -- 8.3.5 - Visualization of flow structure in streamline pattern -- 8.3.6 - Static pressure contour -- 8.3.7 - Flow structure and turbulent characteristics -- 8.3.7.1 - Turbulent kinetic energy (TKE) (k) -- 8.3.7.2 - Turbulent kinetic energy contour plot -- 8.3.7.3 - Turbulent intensity (I) -- 8.3.8 - Turbulent intensity (I) contour plots -- 8.3.8.1 - Turbulent dissipation rate, TDR (ε) -- 8.3.9 - Turbulent dissipation rate, TDR (ε) contour plot -- 8.4 - Conclusion -- References -- Further Readings -- Index -- Back Cover.Woodhead Publishing in materials.Production engineeringProduction engineering.658.5Ram MangeyDavim J. PauloMiAaPQMiAaPQMiAaPQBOOK9910583307703321Advanced applications in manufacturing engineering2278282UNINA04560nam 2200589Ia 450 991081352060332120240410165252.01-60876-338-2(CKB)1000000000787430(EBL)3018368(SSID)ssj0000224267(PQKBManifestationID)12029044(PQKBTitleCode)TC0000224267(PQKBWorkID)10206309(PQKB)11037796(MiAaPQ)EBC3018368(Au-PeEL)EBL3018368(CaPaEBR)ebr10660229(OCoLC)434959459(EXLCZ)99100000000078743020080617d2008 uy 0engur|n|---|||||txtccrPolyester[electronic resource] properties, preparation and applications /Hina Yamashita and Yui Nakano, editors1st ed.New York Nova Science Publishersc20081 online resource (260 p.)Description based upon print version of record.1-60456-753-8 ""POLYESTER: PROPERTIES, PREPARATION AND APPLICATIONS""; ""NOTICE TO THE READER""; ""CONTENTS""; ""PREFACE""; ""HYDROLYSIS OF POLYESTERS AND POLYCARBONATES""; ""ABSTRACT""; ""ABBREVIATIONS""; ""1. INTRODUCTION""; ""2. POLYESTERS""; ""2.1. Hydrolysis of PET in Water""; ""2.2. Acidic Hydrolysis of PET""; ""2.3. Alkaline Hydrolysis of PET""; ""2.4. Other Processes""; ""2.5. Hydrolysis of PEN and PBT""; ""2.6. Industrial Applications""; ""3. POLYCARBONATE""; ""4. CONCLUSION""; ""REFERENCES""; ""MULTIWALL CARBON NANOTUBE REINFORCED POLYESTER NANOCOMPOSITES""; ""ABSTRACT""; ""1. INTRODUCTION""""1.1. Multiwall Carbon Nanotube (MWCNT)""""1.2. CNT/Polymer Nanocomposites""; ""2. PROCESSING OF CNT/POLYMER NANOCOMPOSITES""; ""2.1. General Features""; ""2.2. CNT-Reinforced PEN Nanocomposites""; ""3. UNIQUE NUCLEATION OF CNT AND PEN NANOCOMPOSITES DURING NON-ISOTHERMAL CRYSTALLIZATION""; ""3.1. Morphology""; ""3.2. Thermal Behavior""; ""3.3. Non-Isothermal Crystallization Behavior""; ""3.4. Nucleation Activity and Activation Energy for Non-Isothermal Crystallization""; ""4. INFLUENECE OF CNT ON PHYSICAL PROPERTIES OF PEN NANOCOMPOSIES""; ""4.1. Dynamic Mechanical Thermal Analysis""""4.2. Rheological Behavior""""4.3. Mechanical Properties and Thermal Stability""; ""5. CRYSTALLIZATION, MELTING BEHAVIOR, AND MECHANICAL PROPERTIES OF CNT AND PEN NANOCOMPOSITES""; ""5.1. Isothermal Crystallization and Melting Behavior""; ""5.2. Mechanical Properties and Theoretical Approach""; ""6. THERMAL STABILITY AND DEGRADATION BEHAVIOR OF PEN/CNT NANOCOMPOSITES""; ""6.1. Dynamic Mechanical Thermal Properties""; ""6.2. Thermal Stability""; ""6.3. Thermal Degradation Kinetics""; ""6.4. Interconnencted Network-Like Structures of MWCNT""; ""7. SUMMARY""; ""REFERENCES""""RECENT DEVELOPMENTS IN MODIFICATION OF CYANATE ESTER RESINS""""1. INTRODUCTION""; ""2. HYBRID NETWORKS FROM CYANATE ESTERS AND POLYETHERS (POLYESTERS)""; ""3. POLYCYANURATE-POLYURETHANE GRAFTED SEMI-IPNS""; ""3.1 Synthesis, Chemical Interaction between Components, Reactive Grafting and Compatibilization""; ""3.2. Kinetic Peculiarities""; ""3.3. Relaxation Behaviour and Phase Structure""; ""3.4. Influence of Carbon Fiber Filler on Formation and Phase Structure""; ""3.5 Properties. Adhesion to Metals""; ""4. POLYCYANURATE-POLYURETHANE LINKED FULL-IPNS""; ""5. CONCLUSIONS""; ""REFERENCES""""BIODEGRADABLE ALIPHATIC POLYESTERS DERIVED FROM 1,3-PROPANEDIOL: CURRENT STATUS AND PROMISES""""ABSTRACT""; ""1. INTRODUCTION""; ""2. DISCUSSION""; ""2.1. 1,3-Propanediol as a Monomer for Polymer Production""; ""2.2. Synthesis and Characterization of the Polyesters of 1,3-PD""; ""2.3. Biodegradation""; ""2.4. Copolymers""; ""2.5. Blends""; ""2.6. Application of PPSu in Drug Delivery Systems""; ""3. CONCLUSION""; ""REFERENCES""; ""COMPATIBILITY OF COTTON/NYLON AND COTTON/POLYESTER WARP-KNIT TERRY TOWELLING WITH INDUSTRIAL LAUNDERING PROCEDURES""; ""ABSTRACT""; ""INTRODUCTION""""AIM OF THE STUDY""PolyestersGums and resins, SyntheticPolyesters.Gums and resins, Synthetic.668.4/225Nakano Yui1690244Yamashita Hina1690245MiAaPQMiAaPQMiAaPQBOOK9910813520603321Polyester4065842UNINA