05589nam 2200769 a 450 991081310510332120240313190033.01-118-56040-X0-470-97583-01-299-44936-00-470-97582-2(CKB)2550000001018508(EBL)1161531(OCoLC)836404777(SSID)ssj0000855758(PQKBManifestationID)11507516(PQKBTitleCode)TC0000855758(PQKBWorkID)10791122(PQKB)10613457(MiAaPQ)EBC1161531(DLC) 2013012412(Au-PeEL)EBL1161531(CaPaEBR)ebr10682391(CaONFJC)MIL476186(PPN)196621380(OCoLC)832698430(FINmELB)ELB179637(EXLCZ)99255000000101850820130321d2013 uy 0engur|n|---|||||txtccrAqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals /editor, Charles E. Wyman1st ed.Chichester, West Sussex [U.K.] Wiley20131 online resource (568 p.)Wiley series in renewable resourcesIncludes index.0-470-97202-5 Includes bibliographical references and index.Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals; Contents; List of Contributors; Foreword; Series Preface; Preface; Acknowledgements; 1 Introduction; 1.1 Cellulosic Biomass: What and Why?; 1.2 Aqueous Processing of Cellulosic Biomass into Organic Fuels and Chemicals; 1.3 Attributes for Successful Pretreatment; 1.4 Pretreatment Options; 1.5 Possible Blind Spots in the Historic Pretreatment Paradigm; 1.6 Other Distinguishing Features of Pretreatment Technologies; 1.7 Book Approach; 1.8 Overview of Book Chapters; Acknowledgements; References2 Cellulosic Biofuels: Importance, Recalcitrance, and Pretreatment2.1 Our Place in History; 2.2 The Need for Energy from Biomass; 2.3 The Importance of Cellulosic Biomass; 2.4 Potential Barriers; 2.5 Biological and Thermochemical Approaches to the Recalcitrance Barrier; 2.6 Pretreatment; Acknowledgements; References; 3 Plant Cell Walls: Basics of Structure, Chemistry, Accessibility and the Influence on Conversion; 3.1 Introduction; 3.2 Biomass Diversity Leads to Variability in Cell-wall Structure and Composition; 3.3 Processing Options for Accessing the Energy in the Lignocellulosic Matrix3.4 Plant Tissue and Cell Types Respond Differently to Biomass Conversion3.5 The Basics of Plant Cell-wall Structure; 3.6 Cell-wall Surfaces and Multilamellar Architecture; 3.7 Cell-wall Ultrastructure and Nanoporosity; 3.8 Computer Simulation in Understanding Biomass Recalcitrance; 3.8.1 What Can We Learn from Molecular Simulation?; 3.8.2 Simulations of Lignin; 3.8.3 Simulations of Cellulose; 3.8.4 Simulation of Lignocellulosic Biomass; 3.8.5 Outlook for Biomass Simulations; 3.9 Summary; Acknowledgements; References4 Biological Conversion of Plants to Fuels and Chemicals and the Effects of Inhibitors4.1 Introduction; 4.2 Overview of Biological Conversion; 4.3 Enzyme and Ethanol Fermentation Inhibitors Released during Pretreatment and/or Enzyme Hydrolysis; 4.3.1 Enzyme Inhibitors Derived from Plant Cell-wall Constituents (Lignin, Soluble Phenolics, and Hemicellulose); 4.3.2 Effect of Furfurals and Acetic Acid as Inhibitors of Ethanol Fermentations; 4.4 Hydrolysis of Pentose Sugar Oligomers Using Solid-acid Catalysts4.4.1 Application of Solid-acid Catalysts for Hydrolysis of Sugar Oligomers Derived from Lignocelluloses4.4.2 Factors Affecting Efficiency of Solid-acid-catalyzed Hydrolysis; 4.5 Conclusions; Acknowledgements; References; 5 Catalytic Strategies for Converting Lignocellulosic Carbohydrates to Fuels and Chemicals; 5.1 Introduction; 5.2 Biomass Conversion Strategies; 5.3 Criteria for Fuels and Chemicals; 5.3.1 General Considerations in the Production of Fuels and Fuel Additives; 5.3.2 Consideration for Specialty Chemicals; 5.4 Primary Feedstocks and Platforms; 5.4.1 Cellulose5.4.2 Hemicellulose Plant biomass is attracting increasing attention as a sustainable resource for large-scale production of renewable fuels and chemicals. However, in order to successfully compete with petroleum, it is vital that biomass conversion processes are designed to minimize costs and maximize yields. Advances in pretreatment technology are critical in order to develop high-yielding, cost-competitive routes to renewable fuels and chemicals. Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals presents a comprehensive overview of the currentlyWiley series in renewable resources.Plant biomassBiomass energyBiomass chemicalsBiotechnologyPlant biomass.Biomass energy.Biomass chemicals.Biotechnology.333.95/39Wyman Charles22258MiAaPQMiAaPQMiAaPQBOOK9910813105103321Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals4022909UNINA