03439nam 2200577 450 991081275070332120170822144508.01-4704-0358-7(CKB)3360000000464944(EBL)3114458(SSID)ssj0000973493(PQKBManifestationID)11537981(PQKBTitleCode)TC0000973493(PQKBWorkID)10959881(PQKB)10840914(MiAaPQ)EBC3114458(RPAM)12816779(PPN)195416465(EXLCZ)99336000000046494420020613h20022002 uy| 0engur|n|---|||||txtccrExtending intersection homology type invariants to non-Witt spaces /Markus BanaglProvidence, Rhode Island :American Mathematical Society,[2002]©20021 online resource (101 p.)Memoirs of the American Mathematical Society,0065-9266 ;number 760Description based upon print version of record.0-8218-2988-2 Includes bibliographical references (page 83).""Contents""; ""Chapter 1. Introduction""; ""1. History""; ""2. Motivation""; ""3. The Main Result: A Postnikov System of Lagrangian Structures""; ""4. Consequences: Characteristic Classes""; ""5. Ordered Resolutions â€? A Model Construction""; ""6. Applications""; ""7. Further Developments""; ""8. Sign Questions""; ""9. Some Remarks on Coefficients""; ""10. Acknowledgments""; ""11. Notation""; ""Chapter 2. The Algebraic Framework""; ""1. The Lifting Obstruction""; ""2. The Category of Selfâ€?Dual Sheaves Compatible with IH""; ""3. Lagrangian Structures""""4. Extracting Lagrangian Structures from Selfâ€?Dual Sheaves""""5. Lagrangian Structures as Building Blocks for Selfâ€?Dual Sheaves""; ""6. A Postnikov system""; ""Chapter 3. Ordered Resolutions""; ""1. The Purpose of the Construction""; ""2. Definitions""; ""3. The PL Construction""; ""4. Inductive Singularization of a Manifold""; ""Chapter 4. The Cobordism Group Ω[sup(SD)][sub(*)]""; ""1. The Closed Objects""; ""2. The Admissible Cobordisms""; ""3. The Cobordism Invariance of Ï?""; ""4. Relation to Witt Space Cobordism""; ""Chapter 5. Lagrangian Structures and Ordered Resolutions""""1. Statement of Result""""2. The inductive setâ€?up""; ""3. Construction of a nonsingular pairing on H[sup(k)](j*S[sup[.)]""; ""4. Stalks of H[sup(k)](j*S[sup[.)] as the hypercohomology of the link of Σ""; ""5. The restriction of L[[sup(.)](X[sup((m))]) to V(x) is selfâ€?dual""; ""6. The construction of a Lagrangian subsheaf of H[sup(k)](j*S[sup[.)]""; ""7. The definition of L[sup(.)](X[sup((m+1))])""; ""Appendix A. On Signs""; ""Bibliography""Memoirs of the American Mathematical Society ;no. 760.Intersection homology theoryDuality theory (Mathematics)Intersection homology theory.Duality theory (Mathematics)510 s514/.23Banagl Markus1971-478943MiAaPQMiAaPQMiAaPQBOOK9910812750703321Extending intersection homology type invariants to non-Witt spaces3952122UNINA