00995nam--2200349---450-9900003236802033160032368USA010032368(ALEPH)000032368USA01003236820010112d1997----km-y0itay0103----baFREFR||||||||001yyParacelse1493-1541Alexandre KoyréParisAlliacopyr. 199797 p.17 cmEstr. da: Mystiques, spirituels, alchimistes du 16. siècle allemandParacelso610.9KOYRE',ALEXANDRE439954ITsalbcISBD990000323680203316610.9 KOY155477 L.M.61000008195BKUMATAMI4020010112USA011313TAMI4020010116USA01091020020403USA011640PATRY9020040406USA011623Paracelse880127UNISA02155nam 2200493 450 991081254160332120230814182500.01-4704-0003-0(CKB)3360000000464297(EBL)3113658(SSID)ssj0000973208(PQKBManifestationID)11611888(PQKBTitleCode)TC0000973208(PQKBWorkID)10958991(PQKB)10403817(MiAaPQ)EBC3113658(RPAM)0000000689(PPN)19540940X(EXLCZ)99336000000046429720750505d1965 uy 0engur|n|---|||||txtrdacontentcrdamediacrrdacarrierA hierarchy of formulas in set theory /Azriel LévyProvidence :American Mathematical Society,1965.1 online resource (79 pages)Memoirs of the American Mathematical Society ;number 570-8218-1257-2 Bibliography: pages 74-76.""Contents""; ""Â1. Introduction""; ""Â2. Definition of the hierarchy""; ""Â3. The relative hierarchy""; ""Â4. Formulas in Σ[sub(o)] and admissible terms""; ""Â5. The satisfaction predicates""; ""Â6. The semantical hierarchy theorem""; ""Â7. Undecidable sentences""; ""Â8. The syntactical hierarchy theorems""; ""Â9. Reflection phenomena""; ""Â10. The lower levels of the hierarchy""; ""Appendix A. The dependence of the results on the axiom of foundation""; ""Appendix B. The Boolean closure of Σ[sub(j)]""; ""Appendix C. Complete reflection in Ackermann's set theory""""Appendix D. Equivalence of the Skolem-LÌ?wenheim theorem with the axiom of dependent choices""""Bibliography""Memoirs of the American Mathematical Society ;57.Set theorySet theory.Levy Azriel41990MiAaPQMiAaPQMiAaPQBOOK9910812541603321A hierarchy of formulas in set theory3915871UNINA