01487nam 2200481 450 991013163720332120230621141333.0(CKB)3710000000467724(SSID)ssj0001669436(PQKBManifestationID)16459306(PQKBTitleCode)TC0001669436(PQKBWorkID)13564999(PQKB)10553301(WaSeSS)IndRDA00056967(EXLCZ)99371000000046772420160829d2012 uy |porur|||||||||||txtccrDa casa à praça pública a espetacularização das festas juninas no espaço urbano /Janio Roque Barros de CastroSalvador :EDUFBA,20121 online resource (342 pages) illustrationsBibliographic Level Mode of Issuance: MonographIncludes bibliographical references.FestivalsBrazilManners & CustomsHILCCAnthropologyHILCCSocial SciencesHILCCBrazilSocial life and customsFestivalsManners & CustomsAnthropologySocial Sciences394.260981Castro Janio Roque Barros de326375PQKBUkMaJRUBOOK9910131637203321Da casa à praça pública2121248UNINA01232nam 2200349Ia 450 991069744790332120080829131342.0(CKB)5470000002388464(OCoLC)244636199(EXLCZ)99547000000238846420080829d2005 ua 0engtxtrdacontentcrdamediacrrdacarrierChanges in the magnitude of annual and monthly streamflows in New England, 1902-2002[electronic resource] /by Glenn A. Hodgkins and Robert W. DudleyReston, Va. :U.S. Dept. of the Interior, U.S. Geological Survey,2005.iv, 37 pages digital, PDF fileScientific investigations report ;2005-5135Title from PDF t.p. (viewed on Aug. 29, 2008).StreamflowNew EnglandStreamflowHodgkins Glenn1388910Dudley Robert W1383862Geological Survey (U.S.)GPOGPOGPOBOOK9910697447903321Changes in the magnitude of annual and monthly streamflows in New England, 1902-20023521746UNINA04413nam 2200577 450 991081125720332120230120014530.01-4831-8963-5(CKB)3710000000199910(EBL)1901360(SSID)ssj0001267023(PQKBManifestationID)12564639(PQKBTitleCode)TC0001267023(PQKBWorkID)11255015(PQKB)11516658(MiAaPQ)EBC1901360(EXLCZ)99371000000019991020150119h19821982 uy 0engur|n|---|||||txtccrThe logical foundations of mathematics /by William S. HatcherFirst edition.Oxford, England :Pergamon Press,1982.©19821 online resource (331 p.)Foundations and Philosophy of Science and Technology SeriesDescription based upon print version of record.1-322-55676-8 0-08-025800-X Includes bibliographical references and index.Front Cover; The Logical Foundations of Mathematics; Copyright Page; Dedication; Preface; Table of Contents; Chapter 1. First-order Logic; 1.1. The sentential calculus; 1.2. Formalization; 1.3. The statement calculus as a formal system; 1.4. First-order theories; 1.5. Models of first-order theories; 1.6. Rules of logic; natural deduction; 1.7. First-order theories with equality; variable-binding term operators; 1.8. Completeness with vbtos; 1.9. An example of a first-order theory; Chapter 2. The Origin of Modern Foundational Studies; 2.1. Mathematics as an independent science2.2. The arithmetization of analysis2.3. Constructivism; 2.4. Frege and the notion of a formal system; 2.5. Criteria for foundations; Chapter 3. Frege's System and the Paradoxes; 3,1. The intuitive basis of Frege's system; 3.2. Frege's system; 3.3. The theorem of infinity; 3.4. Criticisms of Frege's system; 3.5. The paradoxes; 3.6. Brouwer and intuitionism; 3.7. Poincare'snotion of im predicative definition; 3.8. Russell's principle of vicious circle; 3.9. The logical paradoxes and the semantic paradoxes; Chapter 4. The Theory of Types; 4.1. Quantifying predicate letters4.2. Predicative type theory4.3. The development of mathematics in PT; 4.4. The system TT; 4.5. Criticisms of type theory as a foundation for mathematics; 4.6. The system ST; 4.7. Type theory and first-order logic; Chapter 5. Zermelo-Fraenkel Set Theory; 5.1. Formalization of ZF; 5.2. The completing axioms; 5.3. Relations, functions, and simple recursion; 5.4. The axiom of choice; 5.5. The continuum hypothesis; descriptive set theory; 5.6. The systems of vonNeumann-Bernays-Godel and Mostowski-Kelley-Morse; 5.7. Number systems; ordinal recursion; 5.8. Conway's numbersChapter 6. Hilbert's Program and Godel's IncompletenessTheorems6.1. Hilbert's program; 6.2. Godel's theorems and their import; 6.3. The method of proof of Godel's theorems; recursive functions; 6.4. Nonstandard models of S; Chapter 7. The Foundational Systems of W. V. Quine; 7.1. The system NF; 7.2. Cantor's theorem in NF; 7.3. The axiom of choice in NF and the theorem of infinity; 7.4. NF and ST; typical ambiguity; 7.5. Quine's system ML; 7.6. Further results on NF; variant systems; 7.7. Conclusions; Chapter 8. Categorical Algebra; 8.1. The notion of a category8.2. The first-order language of categories8.3. Category theory and set theory; 8.4. Functors and large categories; 8.5. Formal development of the language and theory CS; 8.6. Topos theory; 8.7. Global elements in toposes; 8.8. Image factorizations and the axiom of choice; 8.9. A last look at CS; 8.10. ZF andWT; 8.11. The internal logic of toposes; 8.12. The internal language of a topos; 8.13. Conclusions; Selected Bibliography; IndexThe Logical Foundations of MathematicsFoundations & philosophy of science & technology.MathematicsPhilosophyMathematicsPhilosophy.510/.1Hatcher William S.47598MiAaPQMiAaPQMiAaPQBOOK9910811257203321Logical foundations of mathematics79103UNINA