04645nam 22006854a 450 991081087540332120200520144314.01-107-12276-71-280-43043-597866104304370-511-17451-90-511-04145-40-511-15445-30-511-32835-40-511-53510-40-511-04763-0(CKB)1000000000003572(EBL)201506(OCoLC)475915189(SSID)ssj0000168938(PQKBManifestationID)11153722(PQKBTitleCode)TC0000168938(PQKBWorkID)10202987(PQKB)10741479(UkCbUP)CR9780511535109(Au-PeEL)EBL201506(CaPaEBR)ebr10005746(CaONFJC)MIL43043(MiAaPQ)EBC201506(PPN)261329227(EXLCZ)99100000000000357220010227d2001 uy 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierHarmonic superspace /A.S. Galperin ... [et al.]1st ed.Cambridge ;New York Cambridge University Press20011 online resource (xiv, 306 pages) digital, PDF file(s)Cambridge monographs on mathematical physicsTitle from publisher's bibliographic system (viewed on 05 Oct 2015).0-521-02042-5 0-521-80164-8 Includes bibliographical references (p. 289-303) and index.Brief motivations --Spaces and superspaces --Chirality as a kind of Grassmann analyticity --N = 1 chiral superfields --Auxiliary fields --Why standard superspace is not adequate for N = 2 supersymmetry --Search for conceivable superspaces (spaces) --N = 2 harmonic superspace --Dealing with the sphere S[superscript 2] --Comparison with the standard harmonic analysis --Why harmonic superspace helps --N = 2 supersymmetric theories --N = 2 matter hypermultiplet --N = 2 Yang-Mills theory --N = 2 supergravity --N = 3 Yang-Mills theory --Harmonics and twistors. Self-duality equations --Elements of supersymmetry --Poincare and conformal symmetries --Poincare group --Conformal group --Two-component spinor notation --Poincare and conformal superalgebras --N = 1 Poincare superalgebra --Extended supersymmetry --Conformal supersymmetry --Central charges from higher dimensions --Representations of Poincare supersymmetry --Representations of the Poincare group --Poincare superalgebra representations. Massive case --Poincare superalgebra representations. Massless case --Representations with central charge --Realizations of supersymmetry on fields. Auxiliary fields --N = 1 matter multiplet --N = 1 gauge multiplet --Auxiliary fields and extended supersymmetry --Superspace --Coset space generalities --Coset spaces for the Poincare and super Poincare groups --N = 2 harmonic superspace --Harmonic variables --Harmonic covariant derivatives --N = 2 superspace with central charge coordinates.This is a pedagogical introduction to the harmonic superspace method in extended supersymmetry. Inspired by exciting developments in superstring theory, it provides a systematic treatment of the quantum field theories with N=2 and N=3 supersymmetry in harmonic superspace. The authors present the harmonic superspace approach as a means of providing an off-shell description of the N=2 supersymmetric theories, both at the classical and quantum levels. Furthermore, they show how it offers a unique way to construct an off-shell formulation of a theory with higher supersymmetry, namely the N=3 supersymmetric Yang-Mills theory. Harmonic Superspace makes manifest many remarkable geometric properties of the N=2 theories, for example, the one-to-one correspondence between N=2 supersymmetric matter, and hyper-Kähler and quaternionic manifolds. This book will be of interest to researchers and graduate students working in the areas of supersymmetric quantum field theory, string theory and complex geometries.Cambridge monographs on mathematical physics.SupersymmetrySupersymmetry.539.7/25Galperin A. S(Alexander Samoilovich),1954-1684391MiAaPQMiAaPQMiAaPQBOOK9910810875403321Harmonic superspace4055868UNINA