05635nam 2200733 450 991081081870332120231110224846.01-118-62541-21-118-62545-5(CKB)3460000000120735(EBL)1771575(SSID)ssj0000719792(PQKBManifestationID)12297401(PQKBTitleCode)TC0000719792(PQKBWorkID)10660251(PQKB)10015253(Au-PeEL)EBL1771575(CaPaEBR)ebr10915823(CaONFJC)MIL639080(OCoLC)889674830(Au-PeEL)EBL7103888(CaSebORM)9780470467046(MiAaPQ)EBC1771575(MiAaPQ)EBC7103888(EXLCZ)99346000000012073520140902h20112011 uy 0engur|n|---|||||txtccrAn introduction to bootstrap methods with applications to R /Michael R. Chernick, Robert A. LaBudde1st editionHoboken, New Jersey :Wiley,2011.20111 online resource (236 p.)New York Academy of Sciences Description based upon print version of record.1-322-07829-7 0-470-46704-5 Includes bibliographical references and index.Cover ; Title Page ; Copyright ; Contents ; Preface ; Acknowledgments ; List of Tables ; 1: INTRODUCTION ; 1.1 Historical Background ; 1.2 Definition and Relationship to the Delta Method and Other Resampling Methods ; 1.2.1 Jackknife ; 1.2.2 Delta Method ; 1.2.3 Cross Validation ; 1.2.4 Subsampling ; 1.3 Wide Range of Applications ; 1.4 The Bootstrap and the R Language System ; 1.5 Historical Notes ; 1.6 Exercises ; References ; 2: ESTIMATION; 2.1 Estimating Bias ; 2.1.1 Bootstrap Adjustment ; 2.1.2 Error Rate Estimation in Discriminant Analysis2.1.3 Simple Example of Linear Discrimination and Bootstrap Error Rate Estimation 2.1.4 Patch Data Example ; 2.2 Estimating Location ; 2.2.1 Estimating a Mean ; 2.2.2 Estimating a Median ; 2.3 Estimating Dispersion ; 2.3.1 Estimating an Estimate's Standard Error ; 2.3.2 Estimating Interquartile Range ; 2.4 Linear Regression ; 2.4.1 Overview ; 2.4.2 Bootstrapping Residuals ; 2.4.3 Bootstrapping Pairs (response and Predictor Vector) ; 2.4.4 Heteroscedasticity of Variance: the Wild Bootstrap ; 2.4.5 a Special Class of Linear Regression Models: Multivariable Fractional Polynomials2.5 Nonlinear Regression 2.5.1 Examples of Nonlinear Models ; 2.5.2 a Quasi Optical Experiment ; 2.6 Nonparametric Regression ; 2.6.1 Examples of Nonparametric Regression Models ; 2.6.2 Bootstrap Bagging ; 2.7 Historical Notes ; 2.8 Exercises ; References ; 3: CONFIDENCE INTERVALS ; 3.1 Subsampling, Typical Value Theorem, and Efron's Percentile Method ; 3.2 Bootstrap-t ; 3.3 Iterated Bootstrap ; 3.4 Bias Corrected (BC) Bootstrap ; 3.5 Bca and Abc ; 3.6 Tilted Bootstrap ; 3.7 Variance Estimation with Small Sample Sizes ; 3.8 Historical Notes ; 3.9 Exercises ; References ; 4: HYPOTHESIS TESTING4.1 Relationship to Confidence Intervals 4.2 Why Test Hypotheses Differently? ; 4.3 Tendril Dx Example ; 4.4 Klingenberg Example: Binary Dose-response ; 4.5 Historical Notes ; 4.6 Exercises ; References ; 5: TIME SERIES; 5.1 Forecasting Methods ; 5.2 Time Domain Models ; 5.3 Can Bootstrapping Improve Prediction Intervals? ; 5.4 Model Based Methods ; 5.4.1 Bootstrapping Stationary Autoregressive Processes ; 5.4.2 Bootstrapping Explosive Autoregressive Processes ; 5.4.3 Bootstrapping Unstable Autoregressive Processes ; 5.4.4 Bootstrapping Stationary Arma Processes5.5 Block Bootstrapping for Stationary Time Series 5.6 Dependent Wild Bootstrap (DWB) ; 5.7 Frequency-based Approaches for Stationary Time Series ; 5.8 Sieve Bootstrap ; 5.9 Historical Notes ; 5.10 Exercises ; References ; 6: BOOTSTRAP VARIANTS; 6.1 Bayesian Bootstrap ; 6.2 Smoothed Bootstrap ; 6.3 Parametric Bootstrap ; 6.4 Double Bootstrap ; 6.5 the M-out-of-n Bootstrap ; 6.6 the Wild Bootstrap ; 6.7 Historical Notes ; 6.8 Exercise ; References ; 7: CHAPTER SPECIAL TOPICS; 7.1 Spatial Data ; 7.1.1 Kriging ; 7.1.2 Asymptotics for Spatial Data ; 7.1.3 Block Bootstrap on Regular Grids7.1.4 Block Bootstrap on Irregular GridsA comprehensive introduction to bootstrap methods in the R programming environment Bootstrap methods provide a powerful approach to statistical data analysis, as they have more general applications than standard parametric methods. An Introduction to Bootstrap Methods with Applications to R explores the practicality of this approach and successfully utilizes R to illustrate applications for the bootstrap and other resampling methods. This book provides a modern introduction to bootstrap methods for readers who do not have an extensive background in advanced mathematics. Emphasis throughout isNew York Academy of Sciences Bootstrap (Statistics)R (Computer program language)Bootstrap (Statistics)R (Computer program language)519.5/4MAT029000bisacshChernick Michael R.140081LaBudde Robert A.1947-MiAaPQMiAaPQMiAaPQBOOK9910810818703321An introduction to bootstrap methods with applications to R4029521UNINA