05409nam 2200661 450 991081032780332120200520144314.01-118-90893-71-118-90888-01-118-90873-2(CKB)3710000000127317(EBL)1676663(OCoLC)881415496(SSID)ssj0001305083(PQKBManifestationID)11766819(PQKBTitleCode)TC0001305083(PQKBWorkID)11248947(PQKB)11458750(OCoLC)884591108(MiAaPQ)EBC1676663(Au-PeEL)EBL1676663(CaPaEBR)ebr10885009(CaONFJC)MIL620516(PPN)230653634(EXLCZ)99371000000012731720140702h20142014 uy 0engur|n|---|||||txtccrEquilibrium and transfer in porous media 1 equilibrium states /Jean-Francois DaïanLondon, [England] ;Hoboken, New Jersey :ISTE :Wiley,2014.©20141 online resource (230 p.)Civil Engineering and Geomechanics SeriesDescription based upon print version of record.1-84821-675-0 Includes bibliographical references and index.Cover; Title Page; Contents; Foreword; Nomenclature; Introduction; Chapter 1. Fluids in Equilibrium in the Pore Space: Capillary Behavior; 1.1. The pore space and its representation; 1.1.1. Complexity of the pore space; 1.1.2. Description of the microstructure; 1.1.3. Porometric distribution: representation through cylindrical pores; 1.2. Capillary pressureGL and interfacial mechanical equilibrium: Laplace's law; 1.2.1. Two-phase occupation of the pore space; 1.2.2. Capillarity: wetting and interfacial tension; 1.2.3. Laplace's law: capillary pressure; 1.2.4. Saturation: retention curves1.2.5. Fluids and cohesion of granular media1.3. Liquid-vapor thermodynamic equilibrium: Kelvin's law; 1.3.1. The capillary couple of volatile liquid-inert gas; 1.3.2. Partial pressure of vapor: Kelvin's law; 1.3.3. Sorption isotherms: the capillary domain and the adsorption domain; 1.3.4. State variables and "contingent variables"; Chapter 2. Interfaces, Equilibrium of Solutions and Freezing in Porous Media: Thermodynamic Aspects; 2.1. Interfaces and adsorption; 2.1.1. Interfacial films; 2.1.2. Capillary interface; 2.1.3. Wetting and adsorption films2.1.4. Intersection of the interfaces and wetting angles2.1.5. Thermodynamics of interface and adsorption; 2.2. Solutions in porous media: capillary potential and osmotic potential; 2.2.1. Mechanical and thermodynamic equilibrium of solutions; 2.2.2. Osmotic barriers; 2.3. Freezing of the interstitial liquid; 2.3.1. Mechanical and thermodynamic equilibrium; 2.3.2. The freezing process: thermoporometry; 2.4. Appendix: thermodynamic points of reference; 2.4.1. Pressure in fluids; 2.4.2. Principles of thermodynamics and state functions; 2.4.3. Diphasic equilibrium of a pure body2.4.4. Thermodynamics of mixtures2.4.5. Expression of state functions; Chapter 3. Capillary Behavior and Porometry: Experimental Investigation; 3.1. Retention curves; 3.1.1. Retention curves and morphology of the pore space; 3.1.2. Displacements of immiscible liquids; 3.1.3. The liquid-gas couple; 3.1.4. The van Genuchten Form; 3.1.5. Orders of magnitude; 3.1.6. The case of deformable materials; 3.2. Metrology of capillarity; 3.2.1. Measurement of capillary pressure: tensiometer; 3.2.2. Measuring saturation; 3.2.3. Choice and treatment of the samples3.3. Experimental determination and interpretation of retention curves3.3.1. Open air drainage and imbibition; 3.3.2. (Richards) pressure plate; 3.3.3. Mercury porometry; 3.3.4. Pore space and interstitial fluids imaging; 3.4. Appendices and exercises; 3.4.1. Hydrostatics and retention curves; 3.4.2. Retention curves of a material with rough porometry; 3.4.3. Dripping and centrifugation; 3.4.4. Porometric distributions and in situ hydrostatic equilibrium; 3.4.5. Capillary barrier; 3.4.6. The fate of the entrained air during imbibition; 3.4.7. Nucleation during drainage3.4.8. Basic principles of percolation theory A porous medium is composed of a solid matrix and its geometrical complement: the pore space. This porespace can be occupied by one or more fluids. The understanding of transport phenomena in porous media is a challenging intellectual task. This book provides a detailed analysis of the aspects required for the understanding of many experimental techniques in the field of porous media transport phenomena. It is aimed at students or engineers who may not be looking specifically to become theoreticians in porous media, but wish to integrate knowledge of porous media with tCivil engineering and geomechanics series.Porous materialsTransport propertiesPorous materialsTransport properties.620.116Daïan Jean-François1672580MiAaPQMiAaPQMiAaPQBOOK9910810327803321Equilibrium and transfer in porous media 14036021UNINA