05142nam 2200709 450 991080989180332120230617013600.03-11-089976-010.1515/9783110899764(CKB)3390000000034267(EBL)4008030(SSID)ssj0000893440(PQKBManifestationID)12441227(PQKBTitleCode)TC0000893440(PQKBWorkID)10906048(PQKB)10599879(MiAaPQ)EBC4008030(DE-B1597)43622(OCoLC)992454173(DE-B1597)9783110899764(Au-PeEL)EBL4008030(CaPaEBR)ebr11074540(CaONFJC)MIL806651(OCoLC)905867420(EXLCZ)99339000000003426720160223h20032003 uy 0engur|n|---|||||txtccrSelecta /Heinz Bauer ; edited by Herbert Heyer, Niels Jacob, Ivan NetukaReprint 2012Berlin, [Germany] ;New York, [New York] :Walter de Gruyter,2003.©20031 online resource (610 p.)Description based upon print version of record.3-11-017350-6 Includes bibliographical references.Frontmatter -- Preface -- Curriculum vitae -- Ph.D. students of Heinz Bauer -- Contents -- The work of Heinz Bauer in measure and integration / Chatterji, S. D. -- The work of Heinz Bauer in convexity theory / Edwards, D. A. -- The work of Heinz Bauer in potential theory / Netuka, Ivan -- Reguläre und singuläre Abbildungen eines distributiven Verbandes in einen vollständigen Vektorverband, welche der Funktionalgleichung f(x⋁y) + f(x⋀y) = f(x) + f(y) genügen [R3] -- Über die Beziehungen einer abstrakten Theorie des Riemann-Integrals zur Theorie Radonscher Maße [R9] -- Sur l'équivalence des théories de l'intégration selon N. Bourbaki et selon M. H. Stone [R10] -- Minimalstellen von Funktionen und Extremalpunkte [R13] -- Konservative Abbildungen lokal-kompakter Räume [R14] -- Minimalstellen von Funktionen und Extremalpunkte. II [R16] -- Šilovscher Rand und Dirichletsches Problem [R17] -- Axiomatische Behandlung des Dirichletschen Problems für elliptische und parabolische Differentialgleichungen [R19] -- Weiterführung einer axiomatischen Potentialtheorie ohne Kern (Existenz von Potentialen [R20] -- Kennzeichnung kompakter Simplexe mit abgeschlossener Extremalpunktmenge [R21] -- Propriétés fines des fonctions hyperharmoniques dans une théorie axiomatique du potentiel [R23] -- Zum Cauchyschen und Dirichletschen Problem bei elliptischen und parabolischen Differentialgleichungen [R24] -- Mesures avec une image donnée [R25] -- The part metric in convex sets [R26] -- An open mapping theorem for convex sets with only one part [R27] -- Theorems of Korovkin type for adapted spaces [R29] -- Convergence of monotone operators [R30] -- Korovkin approximation in C0(X) [R32] -- Approximation and abstract boundaries [S12] -- Halbgruppen und Resolventen in der Potentialtheorie [S15] -- Harmonic spaces - a survey [S21] -- Heat balls and Fulks measures [R34] -- Simplicial function spaces and simplexes [R35] -- Fine boundary limits of harmonic and caloric functions [R36] -- Simplices in potential theory [S24] -- Fine boundary limits and maximal sequences [R39] -- Behaviour of solutions of elliptic-parabolic differential equations at irregular boundary points [S26] -- Acknowledgements -- BibliographyHeinz Bauer (1928-2002) was one of the prominent figures in Convex Analysis and Potential Theory in the second half of the 20th century. The Bauer minimum principle and Bauer's work on Silov's boundary and the Dirichlet problem are milestones in convex analysis. Axiomatic potential theory owes him what is known by now as Bauer harmonic spaces. These Selecta collect more than twenty of Bauer's research papers including his seminal papers in Convex Analysis and Potential Theory. Above his research contributions Bauer is best known for his art of writing survey articles. Five of his surveys on different topics are reprinted in this volume. Among them is the well-known article Approximation and Abstract Boundary, for which he was awarded with the Chauvenet Price by the American Mathematical Association in 1980.Integrals, GeneralizedMeasure theoryPotential theory (Mathematics)Convex setsIntegrals, Generalized.Measure theory.Potential theory (Mathematics)Convex sets.515/.42SK 430rvkBauer Heinz1928-1649817Heyer HerbertJacob NielsNetuka IvanMiAaPQMiAaPQMiAaPQBOOK9910809891803321Selecta4069920UNINA