01729nam0 2200421 i 450 VAN012452220230628103900.611N978331977649120191018d2018 |0itac50 baengCH|||| |||||Abstract AlgebraAn Introductory CourseGregory T. LeeChamSpringer2018xi, 301 p.ill.24 cm001VAN00294432001 Springer undergraduate mathematics series210 Berlin [etc.]SpringerVAN0236089Abstract Algebra156319920-XXGroup theory and generalizations [MSC 2020]VANC019715MF16-XXAssociative rings and algebras [MSC 2020]VANC019734MF12-XXField theory and polynomials [MSC 2020]VANC019746MFAbstract algebraKW:KAlgebraKW:KConstruction of finite fieldsKW:KFieldsKW:KGroupsKW:KPolynomialsKW:KRingsKW:KCHChamVANL001889LeeGregory T.VANV095951474809Springer <editore>VANV108073650ITSOL20240614RICAhttp://doi.org/10.1007/978-3-319-77649-1E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICAIT-CE0120VAN08NVAN0124522BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08CONS e-book 0994 08eMF994 20191018 Abstract Algebra1563199UNICAMPANIA05974nam 2200865 a 450 991080925980332120240313153953.0978111857684711185768459781299242128129924212X9781118576885111857688897811185769531118576950(CKB)2670000000336874(EBL)1132535(OCoLC)828532768(SSID)ssj0000904816(PQKBManifestationID)11494281(PQKBTitleCode)TC0000904816(PQKBWorkID)10924547(PQKB)11115540(OCoLC)834616400(MiAaPQ)EBC1132535(Au-PeEL)EBL1132535(CaPaEBR)ebr10661509(CaONFJC)MIL455462(PPN)226202437(OCoLC)825555978(FINmELB)ELB178754(Perlego)1013629(EXLCZ)99267000000033687420120925d2013 uy 0engur|n|---|||||txtccrLaser metrology in fluid mechanics granulometry, temperature and concentration measurements /edited by Alain Boutier1st ed.Hoboken, N.J. ISTE Ltd./John Wiley and Sons Inc.20131 online resource (348 p.)Waves seriesDescription based upon print version of record.9781848213982 1848213980 Includes bibliographical references and index.Title Page; Contents; Preface; Introduction; Chapter 1. Basics on Light Scattering by Particles; 1.1. Introduction; 1.2. A brief synopsis of electromagnetic theory; 1.2.1. Maxwell's equations; 1.2.2. Harmonic electromagnetic plane waves; 1.2.3. Optical constants; 1.2.4. Light scattering by a single particle; 1.3. Methods using separation of variables; 1.3.1. Lorenz-Mie (or Mie) theory; 1.3.2. Debye and complex angular momentum theories; 1.4. Rayleigh theory and the discrete dipole approximation; 1.4.1. Rayleigh theory; 1.4.2. Discrete dipole approximation; 1.5. The T-matrix method1.6. Physical (or wave) optics models1.6.1. Huygens-Fresnel integral; 1.6.2. Fraunhofer diffraction theory for a particle with a circular cross section; 1.6.3. Airy theory of the rainbow; 1.6.4. Marston's physical-optics approximation; 1.7. Geometrical optics; 1.7.1. Calculation of the scattering angle; 1.7.2. Calculation of the intensity of rays; 1.7.3. Calculation of the phase and amplitude of rays; 1.8. Multiple scattering and Monte Carlo models; 1.8.1. Scattering by an optically diluted particle system; 1.8.2. Multiple scattering; 1.8.3. Monte Carlo method; 1.9. Conclusion1.10. BibliographyChapter 2. Optical Particle Characterization; 2.1. Introduction; 2.2. Particles in flows; 2.2.1. Diameter, shape and concentration; 2.2.2. Statistical representation of particle size data; 2.2.3. Concentrations and fluxes; 2.3. An attempt to classify OPC techniques; 2.3.1. Physical principles and measured quantities; 2.3.2. Nature and procedure to achieve statistics; 2.4. Phase Doppler interferometry (or anemometry); 2.4.1. Principle; 2.4.2. Modeling the phase-diameter relationship; 2.4.3. Experimental setup and typical results; 2.4.4. Conclusion; 2.5. Ellipsometry2.6. Forward (or "laser") diffraction2.6.1. Principle; 2.6.2. Modeling and inversion of diffraction patterns; 2.6.3. Typical experimental setup and results; 2.6.4. Conclusion; 2.7. Rainbow and near-critical-angle diffractometry techniques; 2.7.1. Similarities to forward diffraction; 2.7.2. Rainbow diffractometry; 2.7.3. Near-critical-angle diffractometry; 2.8. Classical shadowgraph imaging; 2.8.1. Principle and classical setup; 2.8.2. One-dimensional shadow Doppler technique; 2.8.3. Calculation of particle images using the point spread function; 2.8.4. Conclusion2.9. Out-of-focus interferometric imaging2.9.1. Principle; 2.9.2. Modeling the diameter-angular frequency relationship; 2.9.3. Conclusion; 2.10. Holography of particles; 2.10.1. Gabor holography for holographic films; 2.10.2. Inline digital holography; 2.10.3. Conclusion; 2.11. Light extinction spectrometry; 2.11.1. Principle; 2.11.2. Algebraic inverse method; 2.11.3. Experimental setup and conclusion; 2.12. Photon correlation spectroscopy; 2.13. Laser-induced fluorescence and elastic-scattering imaging ratio; 2.13.1. Principle; 2.13.2. Experimental setup and results; 2.13.3. Conclusion2.14. Laser-induced incandescence In fluid mechanics, non-intrusive measurements are fundamental in order to improve knowledge of the behavior and main physical phenomena of flows in order to further validate codes.The principles and characteristics of the different techniques available in laser metrology are described in detail in this book.Velocity, temperature and concentration measurements by spectroscopic techniques based on light scattered by molecules are achieved by different techniques: laser-induced fluorescence, coherent anti-Stokes Raman scattering using lasers and parametric sources, and absorption ISTELasersIndustrial applicationsLaser interferometersMeasurementOptical measurementsIndustrial applicationsFluid mechanicsLasersIndustrial applications.Laser interferometers.Measurement.Optical measurementsIndustrial applications.Fluid mechanics.532Boutier A(Alain)521547MiAaPQMiAaPQMiAaPQBOOK9910809259803321Laser metrology in fluid mechanics3919915UNINA