05745nam 2200781Ia 450 991080834050332120240516163101.03-527-65452-61-280-66354-597866136404753-527-65450-X3-527-65453-4(CKB)2550000000099720(EBL)915633(OCoLC)793996624(SSID)ssj0000661413(PQKBManifestationID)11470066(PQKBTitleCode)TC0000661413(PQKBWorkID)10713339(PQKB)10107276(MiAaPQ)EBC915633(Au-PeEL)EBL915633(CaPaEBR)ebr10560542(CaONFJC)MIL364047(EXLCZ)99255000000009972020120528d2012 uy 0engur|n|---|||||txtccrCharacterization techniques for polymer nanocomposites /edited by Vikas Mittal1st ed.Weinheim Wiley-VCHc20121 online resource (380 p.)Polymer nano-, micro- & macrocompositesDescription based upon print version of record.3-527-33148-4 Includes bibliographical references and index.Characterization Techniques for Polymer Nanocomposites; Contents; Preface; List of Contributors; 1: Characterization of Nanocomposite Materials: An Overview; 1.1 Introduction; 1.2 Characterization of Morphology and Properties; 1.3 Examples of Characterization Techniques; References; 2: Thermal Characterization of Fillers and Polymer Nanocomposites; 2.1 Introduction; 2.2 TGA of Fillers; 2.2.1 Quantification of the Extent of Surface Modification; 2.2.2 Cleanliness of the Filler Surface; 2.2.3 Comparing the Stability of Different Fillers; 2.2.4 Dynamic TGA Analysis of the Fillers2.2.5 Characterization of the Surface Reactions2.2.6 Different Measurement Environments; 2.2.7 Correlation of Organic Matter with Basal Spacing; 2.3 TGA of Polymer Nanocomposites; 2.3.1 Effect of Filler Concentration; 2.3.2 Effect of Compatibilizer; 2.4 DSC of Fillers; 2.4.1 Thermal Transitions in the Modified Fillers; 2.5 DSC of Composites; 2.5.1 Transitions in Composites; 2.5.2 Optimization of Curing Conditions; References; 3: Flame-Retardancy Characterization of Polymer Nanocomposites; 3.1 Introduction; 3.2 Types of Flame-Retardant Nanoadditives; 3.2.1 One-Dimensional Nanomaterials3.2.1.1 Montmorillonite Clay3.2.1.2 Nanographene Platelets; 3.2.2 Two-Dimensional Nanomaterials; 3.2.2.1 Carbon Nanofibers; 3.2.2.2 Carbon Nanotubes; 3.2.2.3 Halloysite Nanotubes; 3.2.3 Three-Dimensional Nanomaterials; 3.2.3.1 Nanosilica; 3.2.3.2 Nanoalumina; 3.2.3.3 Nanomagnesium Hydroxide; 3.2.3.4 Polyhedral Oligomeric Silsequioxanes; 3.3 Thermal, Flammability, and Smoke Characterization Techniques; 3.3.1 Introduction to Test Methods; 3.3.2 Thermogravimetric Analysis (TGA); 3.3.3 The UL 94 Vertical Flame Test; 3.3.4 Oxygen Index (Limiting Oxygen Index) (ASTM D2863-97)3.3.5 Cone Calorimeter (ASTM E 1354)3.3.6 Microscale Combustion Calorimeter (ASTM D 7309); 3.3.7 Steiner Tunnel Test (ASTM E 84); 3.4 Thermal and Flame Retardancy of Polymer Nanocomposites; 3.4.1 One-Dimensional Nanomaterial-Based Nanocomposites; 3.4.1.1 Polymer-Clay Nanocomposites; 3.4.1.2 Polymer-Graphene Nanocomposites; 3.4.2 Two-Dimensional Nanomaterial-Based Nanocomposites; 3.4.2.1 Polymer Carbon Nanofiber Nanocomposites; 3.4.2.2 Polymer Carbon Nanotube Nanocomposites; 3.4.2.3 Polymer Halloysite Nanotube Nanocomposites; 3.4.3 Three-Dimensional Nanomaterial-Based Nanocomposites3.4.3.1 Polymer Nanosilica Nanocomposites3.4.3.2 Polymer Nanoalumina Nanocomposites; 3.4.3.3 Polymer Nanomagnesium Hydroxide Nanocomposites; 3.4.3.4 Polymer POSS Nanocomposites; 3.4.4 Multicomponent FR Systems: Polymer Nanocomposites Combined with Additional Materials; 3.4.4.1 Polymer-Clay with Conventional FR Additive Nanocomposites; 3.4.4.2 Polymer-Carbon Nanotubes with Conventional FR Additive Nanocomposites; 3.4.4.3 Polymer-Clay and -Carbon Nanotubes with Conventional FR Additive Nanocomposites; 3.5 Flame Retardant Mechanisms of Polymer Nanocomposites3.6 Concluding Remarks and Trends of Polymer NanocompositesWith its focus on the characterization of nanocomposites using such techniques as x-ray diffraction and spectrometry, light and electron microscopy, thermogravimetric analysis, as well as nuclear magnetic resonance and mass spectroscopy, this book helps to correctly interpret the recorded data. Each chapter introduces a particular characterization method, along with its foundations, and makes the user aware of its benefits, but also of its drawbacks.As a result, the reader will be able to reliably predict the microstructure of the synthesized polymer nanocomposite and its thermal and mechaPolymer nano-, micro- & macrocomposite series.Polymer compositesNanostructured materialsFillers (Materials)SurfacesNanotechnologyComposite materialsSurfacesPolymer composites.Nanostructured materials.Fillers (Materials)Surfaces.Nanotechnology.Composite materials.Surfaces.620.192Mittal Vikas859118MiAaPQMiAaPQMiAaPQBOOK9910808340503321Characterization techniques for polymer nanocomposites4028521UNINA