02824nam 2200553 450 991080807430332120170822144511.01-4704-0394-3(CKB)3360000000464980(EBL)3114570(SSID)ssj0000973621(PQKBManifestationID)11514626(PQKBTitleCode)TC0000973621(PQKBWorkID)10960480(PQKB)10310465(MiAaPQ)EBC3114570(RPAM)13415935(PPN)19541683X(EXLCZ)99336000000046498020150416h20042004 uy 0engur|n|---|||||txtccrGromov-Hausdorff distance for quantum metric spaces matrix algebras converge to the sphere for quantum Gromov-Hausdorff distance /Marc A. RieffelProvidence, Rhode Island :American Mathematical Society,2004.©20041 online resource (106 p.)Memoirs of the American Mathematical Society,0065-9266 ;Volume 168, Number 796"March 2004, Volume 168, Number 796 (first of 4 numbers)."0-8218-3518-1 Includes bibliographical references.""Contents""; ""Preface""; ""Gromov-Hausdorff Distance for Quantum Metric Spaces""; ""1. Introduction""; ""2. Compact Quantum Metric Spaces""; ""3. Quotients (= ""subsets"")""; ""4. Quantum Gromov-Hausdorff Distance""; ""5. Bridges""; ""6. Isometries""; ""7. Distance Zero""; ""8. Actions of Compact Groups""; ""9. Quantum Tori""; ""10. Continuous Fields of Order-unit Spaces""; ""11. Continuous Fields of Lip-norms""; ""12. Completeness""; ""13. Finite Approximation and Compactness""; ""Appendix 1. An Example where dist[sub(GH)] > dist[sub(q)]""; ""Appendix 2. Dirac Operators are Universal""""Bibliography""""Matrix Algebras Converge to the Sphere for Quantum Gromov-Hausdorff Distance""; ""0. Introduction""; ""1. The Quantum Metric Spaces""; ""2. Choosing the Bridge Constant γ""; ""3. Compact Semisimple Lie Groups""; ""4. Covariant Symbols""; ""5. Contravariant Symbols""; ""6. Conclusion of the Proof of Theorem 3.2""; ""Bibliography""Memoirs of the American Mathematical Society ;Volume 168, Number 796.Noncommutative differential geometryGlobal differential geometryNoncommutative differential geometry.Global differential geometry.516.3/6Rieffel Marc A(Marc Aristide),1937-61830MiAaPQMiAaPQMiAaPQBOOK9910808074303321Gromov-Hausdorff distance for quantum metric spaces1427336UNINA