02778nam 2200589 450 991080807220332120231211230453.01-4704-0333-1(CKB)3360000000464924(EBL)3114358(SSID)ssj0000973372(PQKBManifestationID)11630556(PQKBTitleCode)TC0000973372(PQKBWorkID)10959898(PQKB)10687758(MiAaPQ)EBC3114358(RPAM)12585688(PPN)195416260(EXLCZ)99336000000046492420011109h20022002 uy| 0engur|n|---|||||txtccrMutual invadability implies coexistence in spatial models /Rick DurrettProvidence, Rhode Island :American Mathematical Society,[2002]©20021 online resource (133 p.)Memoirs of the American Mathematical Society,0065-9266 ;number 740"March 2002, volume 156, number 740 (first of 5 numbers)."0-8218-2768-5 Includes bibliographical references (pages 110-118).""Contents""; ""Introduction""; ""Example 1. Predator-prey models""; ""Example 2. Epidemic models""; ""1. Perturbation of one-dimensional systems""; ""2. Two-species Examples""; ""Example 2.1. Linear competition with exclusion""; ""Example 2.2. Two-stage contact process""; ""Example 2.3. Diploid genetics""; ""Example 2.4. One-dimensional systems""; ""Example 2.5. Linear competition without exclusion""; ""3. Lower bounding lemmas for PDE""; ""4. Perturbation of higher-dimensional systems""; ""5. Lyapunov functions for Lotka Volterra systems""; ""6. Three species linear completion models""""7. Three species predator-prey systems""""Example 7.1. Two-prey, one-predator model""; ""Example 7.2. Three species food chain""; ""Example 7.3. Two-predator, one-prey model""; ""Example 7.4. Two infection model""; ""8. Some asymptotic results for our ODE and PDE""; ""A List of the Invadability Conditions""; ""References""Memoirs of the American Mathematical Society ;no. 740.Stochastic processesReaction-diffusion equationsBiologyMathematical modelsStochastic processes.Reaction-diffusion equations.BiologyMathematical models.510 s519.2Durrett Richard1951-55577MiAaPQMiAaPQMiAaPQBOOK9910808072203321Mutual invadability implies coexistence in spatial models4003890UNINA