02796nam 2200553 450 991080807190332120180731044357.01-4704-0332-3(CKB)3360000000464923(EBL)3114575(SSID)ssj0000976572(PQKBManifestationID)11948431(PQKBTitleCode)TC0000976572(PQKBWorkID)11020688(PQKB)10105570(MiAaPQ)EBC3114575(RPAM)12504525(PPN)195416252(EXLCZ)99336000000046492320010816d2002 uy| 0engur|n|---|||||txtccrSub-Laplacians with drift on Lie groups of polynomial volume growth /Georgios K. AlexopoulosProvidence, Rhode Island :American Mathematical Society,2002.1 online resource (119 p.)Memoirs of the American Mathematical Society,0065-9266 ;number 739"Volume 155, number 739 (end of volume)."0-8218-2764-2 Includes bibliographical references.""11. A Taylor formula for the heat functions on nilpotent Lie groups""""12. Harnack inequalities for the derivatives of the heat functions on nilpotent Lie groups""; ""13. Harmonic functions of polynomial growth on nilpotent Lie groups""; ""14. Proof of the Berry-Esseen estimate in the case of nilpotent Lie groups""; ""15. The nil-shadow of a simply connected solvable Lie group""; ""16. Connected Lie groups of polynomial volume growth""; ""17. Proof of propositions 1.6.3 and 1.6.4 in the general case""; ""18. Proof of the Gaussian estimate in the general case""""19. A Berry-Esseen estimate for the heat kernels on connected Lie groups of polynomial volume growth""""20. Polynomials on connected Lie groups of polynomial growth""; ""21. A Taylor formula for the heat functions on connected Lie groups of polynomial volume growth""; ""22. Harnack inequalities for the derivatives of the heat functions""; ""23. Harmonic functions of polynomial growth""; ""24. Berry-Esseen type of estimates for the derivatives of the heat kernel""; ""25. Riesz transforms""; ""Bibliography""Memoirs of the American Mathematical Society ;no. 739.Lie groupsFunctional analysisLie groups.Functional analysis.510 s512/.55Alexopoulos Georgios K.1962-1652931MiAaPQMiAaPQMiAaPQBOOK9910808071903321Sub-Laplacians with drift on Lie groups of polynomial volume growth4003887UNINA