05139oam 2200517 450 991079248040332120190911100032.00-444-56361-X(OCoLC)842881052(MiFhGG)GVRL6ZVB(EXLCZ)99266000000001101420130819d2013 uy 0engurun|---uuuuatxtccrRenewable hydrogen technologies production, purification, storage, applications and safety /edited by Luis M. Gandia, Gurutze Arzamendi, Pedro M. DieguezAmsterdam Elsevier2013Amsterdam :Elsevier,2013.1 online resource (x, 460 pages) illustrations (some color)Gale eBooksDescription based upon print version of record.0-444-56352-0 Includes bibliographical references and index.Front Cover; Renewable Hydrogen Technologies: Production, Purification, Storage, Applications and Safety; Copyright; Contents; Preface; List of Contributors; Chapter 1 - Renewable Hydrogen Energy: An Overview; 1.1 SETTING THE CONTEXT: CLIMATE CHANGE AND ENERGY SECURITY; 1.2 IS A NEW ENERGY CARRIER NECESSARY?; 1.3 HYDROGEN PRODUCTION; 1.4 HYDROGEN TODAY; Acknowledgments; References; Chapter 2 - Water Electrolysis Technologies; 2.1 INTRODUCTION TO WATER ELECTROLYSIS; 2.2 ALKALINE WATER ELECTROLYSIS; 2.3 PROTON-EXCHANGE MEMBRANE WATER ELECTROLYSIS; 2.4 HIGH-TEMPERATURE WATER ELECTROLYSIS2.5 CONCLUSION References; Chapter 3 - Hydrogen Production from Water Splitting Using Photo-Semiconductor Catalysts; 3.1 INTRODUCTION; 3.2 PRINCIPLES OF WATER SPLITTING ON PHOTO-SEMICONDUCTOR CATALYSTS; 3.3 PHOTO-SEMICONDUCTOR MATERIALS FOR WATER SPLITTING; 3.4 STRATEGIES TO IMPROVE THE VISIBLE RESPONSE OF UV-ACTIVE PHOTOCATALYSTS; 3.5 STRATEGIES TO IMPROVE THE PHOTOGENERATED CHARGE SEPARATION; 3.6 CHALLENGES AND OPPORTUNITIES; Acknowledgments; References; Chapter 4 - Solar Thermal Water Splitting; 4.1 INTRODUCTION; 4.2 DIRECT WATER SPLITTING; 4.3 THERMOCHEMICAL CYCLES4.4 HIGH-TEMPERATURE ELECTROLYSIS 4.5 CONCLUSIONS; References; Chapter 5 - Biomass Sources for Hydrogen Production; 5.1 INTRODUCTION; 5.2 BIOMASS COMPOSITION AND PROPERTIES; 5.3 BIOMASS RESOURCE POTENTIAL; 5.4 PRETREATMENT OF BIOMASS FEEDSTOCKS; 5.5 METHODOLOGIES FOR THE PRODUCTION OF HYDROGEN FROM BIOMASS; 5.6 LIFE CYCLE ASSESSMENT AND HYDROGEN PRODUCTION COSTS; References; Chapter 6 - Hydrogen from Biomass: Advances in Thermochemical Processes; 6.1 INTRODUCTION; 6.2 STEAM REFORMING OF BIOMASS-DERIVED CHEMICALS; 6.3 AQUEOUS-PHASE REFORMING; 6.4 SUPERCRITICAL REFORMING6.5 SORPTION-ENHANCED REFORMING OF BIOMASS-DERIVED CHEMICALS 6.6 H2 PRODUCTION BY BIOMASS GASIFICATION; 6.7 CONCLUSIONS AND PERSPECTIVES; Acknowledgments; References; Chapter 7 - Hydrogen from Bioethanol; 7.1 INTRODUCTION; 7.2 STEAM REFORMING OF ETHANOL; 7.3 PARTIAL OXIDATION OF ETHANOL; 7.4 AUTOTHERMAL REFORMING OF ETHANOL; 7.5 ETHANOL REFORMING IN CATALYTIC MEMBRANE REACTORS; 7.6 ETHANOL REFORMING IN MINIATURIZED SYSTEMS; 7.7 PHOTOCATALYTIC PRODUCTION OF HYDROGEN FROM ETHANOL; 7.8 CONCLUDING REMARKS; Acknowledgments; References; Chapter 8 - Biological Hydrogen Production; 8.1 INTRODUCTION8.2 DARK FERMENTATION 8.3 PHOTOFERMENTATION; 8.4 COUPLED PROCESSES TO DARK FERMENTATION; 8.5 BIOLOGICAL WATER GAS SHIFT REACTION; 8.6 BIOPHOTOLYSIS OF WATER; 8.7 LIFE CYCLE ASSESSMENT OF THE BIOLOGICAL H2 PRODUCTION; 8.8 CONCLUSIONS; Acknowledgments; References; Chapter 9 - Advances in Structured and Microstructured Catalytic Reactors for Hydrogen Production; 9.1 INTRODUCTION; 9.2 STRUCTURED CATALYSTS; 9.3 MICROSTRUCTURED REACTORS; 9.4 SUBSTRATE MATERIALS FOR STRUCTURED CATALYSTS AND MICROSTRUCTURED REACTORS; 9.5 CATALYST COATING ON STRUCTURED SUBSTRATE; 9.6 HYDROGEN PRODUCTION FROM BIOFUELS9.7 COMBUSTIONThe fields covered by the hydrogen energy topic have grown rapidly, and now it has become clearly multidisciplinary. In addition to production, hydrogen purification and especially storage are key challenges that could limit the use of hydrogen fuel. In this book, the purification of hydrogen with membrane technology and its storage in ""solid"" form using new hydrides and carbon materials are addressed. Other novelties of this volume include the power conditioning of water electrolyzers, the integration in the electric grid of renewable hydrogen systems and the future role of microreactorsHydrogen as fuelTechnological innovationsRenewable energy sourcesTechnological innovationsHydrogen as fuelTechnological innovations.Renewable energy sourcesTechnological innovations.665.81Gandia Luis M.Arzamendi GurutzeDieguez Pedro M.MiFhGGMiFhGGBOOK9910792480403321Renewable hydrogen technologies3732457UNINA