03117nam a2200397 i 4500991003265749707536m o d cr cnu 160801s2014 sz a ob 001 0 eng d9783319113371b14305781-39ule_instBibl. Dip.le Aggr. Matematica e Fisica - Sez. Matematicaeng516.3523AMS 14L24AMS 14B05AMS 14C05AMS 14C25LC QA564.B485Geometric invariant theory for polarized curves[e-book] /Gilberto Bini ... [et al.]Cham [Switzerland] :Springer,20141 online resource (x, 211 pages)Lecture Notes in Mathematics,1617-9692 ;2122Includes bibliographical references and indexIntroduction ; Singular curves ; Combinatorial results ; Preliminaries on GIT ; Potential pseudo-stability theorem ; Stabilizer subgroups ; Behavior at the extremes of the Basic Inequality ; A criterion of stability for Tails ; Elliptic tails and tacnodes with a line ; A strati_cation of the Semistable Locus ; Semistable, polystable and stable points (part I) ; Stability of Elliptic Tails ; Semistable, polystable and stable points (part II) ; Geometric properties of the GIT quotient ; Extra Components of the GIT quotient -- Compacti_cations of the Universal Jacobian ; Appendix: positivity Properties of Balanced Line BundlesWe investigate GIT quotients of polarized curves. More specifically, we study the GIT problem for the Hilbert and Chow schemes of curves of degree d and genus g in a projective space of dimension d-g, as d decreases with respect to g. We prove that the first three values of d at which the GIT quotients change are given by d=a(2g-2) where a=2, 3.5, 4. We show that, for a>4, L. Caporaso's results hold true for both Hilbert and Chow semistability. If 3.5<a<4, the Hilbert semistable locus coincides with the Chow semistable locus and it maps to the moduli stack of weakly-pseudo-stable curves. If 2<a<3.5, the Hilbert and Chow semistable loci coincide and they map to the moduli stack of pseudo-stable curves. We also analyze in detail the critical values a=3.5 and a=4, where the Hilbert semistable locus is strictly smaller than the Chow semistable locus. As an application, we obtain three compactications of the universal Jacobian over the moduli space of stable curves, weakly-pseudo-stable curves and pseudo-stable curves, respectivelyGeometry, AlgebraicInvariantsModuli theoryBini, Gilbertoauthorhttp://id.loc.gov/vocabulary/relators/aut739663Printed edition:9783319113364http://link.springer.com/book/10.1007/978-3-319-11337-1An electronic book accessible through the World Wide Web.b1430578103-03-2201-08-16991003265749707536Geometric invariant theory for polarized curves1465288UNISALENTOle01301-08-16m@ -engsz 0001626nam 2200541 450 991079239230332120230803194653.01-78160-864-4(CKB)2560000000332730(EBL)4104209(SSID)ssj0001683516(PQKBManifestationID)16509153(PQKBTitleCode)TC0001683516(PQKBWorkID)15037944(PQKB)10283411(MiAaPQ)EBC4357170(Au-PeEL)EBL4357170(CaPaEBR)ebr11168508(OCoLC)933450983(EXLCZ)99256000000033273020160321h20142014 uy 0engur|n|---|||||txtccrHiroshige /Mikhail, Uspensky ; translation, Paul WilliamsNew York :Parkstone Press International,[2014]©[2014]1 online resource (254 p.)Description based upon print version of record.1-84484-588-5 Color prints, JapaneseEdo periodWood-engraving, Japanese19th centuryAndo, Hiroshige1797-1858Criticism and interpretationColor prints, JapaneseWood-engraving, JapaneseAndo, Hiroshige,Criticism and interpretation.769.952Uspensky Mikhail1501642Williams PaulMiAaPQMiAaPQMiAaPQBOOK9910792392303321Hiroshige3728885UNINA