01252nam0-22003491i-450-99000015446040332188-8294-036-5000015446FED01000015446(Aleph)000015446FED0100001544620011111d--------km-y0itay50------baitay-------001yy<<Il >>nuovo codice della strada e il prontuario delle infrazioniCostituzione della Repubblica, Legge delegatavole diraffronto tra gli articoli del vecchio e del nuovo codice, tabelleannotazioni e coordinamenti a cura di Potito L. Iascone.7. ed.PiacenzaLa tribunacopyr. 1999541 p.20 cm<<I >>codici vigenti e le leggi specialiTit. nell'occhietto: Il nuovo codice della strada. In cop.: 1999Circolazione stradaleLegislazione343.450 940 263 2Jascone,Potito L.Italia423419ITUNINARICAUNIMARCBK99000015446040332113 F 41 2511324FINBCFINBCNuovo codice della strada e il prontuario delle infrazioni120375UNINAING0101288nam 2200277la 450 991048235610332120221108061653.0(UK-CbPIL)2090364098(CKB)5500000000091612(EXLCZ)99550000000009161220210618d1557 uy |itaurcn||||a|bb|La seconda parte delle historie generali dell'India / con tvtte le cose notabili accadute in esse dal principio fin'à questo giorno, & nuouamente tradotte di Spagnuolo in Italiano. Nelle qvali, oltre all'imprese del Colombo et di Magalanes, e si tratta particolarmente della presa del Re Atabalippa, delle perle, dell'oro, delle spetierie ritrouate alle Malucche, & delle guerre civili tra gli Spagnuoli ..[electronic resource]Venice Andrea Arrivabene, 1534-15701557Online resource ([18], 324 l , (8vo))Reproduction of original in The Wellcome Library, London.López de Gómara Francisco1511-1564.173979Spagnuolo990852Cravaliz Agostino di908728Uk-CbPILUk-CbPILBOOK9910482356103321La seconda parte delle historie generali dell'India2267202UNINA04365nam 2200805 a 450 991079196860332120200520144314.03-11-025816-110.1515/9783110258165(CKB)2560000000079418(EBL)835465(OCoLC)772845223(SSID)ssj0000591852(PQKBManifestationID)11336347(PQKBTitleCode)TC0000591852(PQKBWorkID)10727462(PQKB)10233833(MiAaPQ)EBC835465(DE-B1597)124080(OCoLC)979584734(DE-B1597)9783110258165(Au-PeEL)EBL835465(CaPaEBR)ebr10527867(CaONFJC)MIL628121(PPN)175588007(EXLCZ)99256000000007941820110926d2012 uy 0engur|n|---|||||txtccrStochastic models for fractional calculus[electronic resource] /Mark M. Meerschaert, Alla SikorskiiBerlin ;Boston De Gruyterc20121 online resource (304 p.)De Gruyter studies in mathematics,0179-0986 ;43Description based upon print version of record.1-306-96870-4 3-11-025869-2 Includes bibliographical references and index. Frontmatter -- Preface / Meerschaert, Mark M. / Sikorskii, Alla -- Acknowledgments -- Contents -- Chapter 1. Introduction -- Chapter 2. Fractional Derivatives -- Chapter 3. Stable Limit Distributions -- Chapter 4. Continuous Time Random Walks -- Chapter 5. Computations in R -- Chapter 6. Vector Fractional Diffusion -- Chapter 7. Applications and Extensions -- Bibliography -- IndexFractional calculus is a rapidly growing field of research, at the interface between probability, differential equations, and mathematical physics. It is used to model anomalous diffusion, in which a cloud of particles spreads in a different manner than traditional diffusion. This monograph develops the basic theory of fractional calculus and anomalous diffusion, from the point of view of probability. In this book, we will see how fractional calculus and anomalous diffusion can be understood at a deep and intuitive level, using ideas from probability. It covers basic limit theorems for random variables and random vectors with heavy tails. This includes regular variation, triangular arrays, infinitely divisible laws, random walks, and stochastic process convergence in the Skorokhod topology. The basic ideas of fractional calculus and anomalous diffusion are closely connected with heavy tail limit theorems. Heavy tails are applied in finance, insurance, physics, geophysics, cell biology, ecology, medicine, and computer engineering. The goal of this book is to prepare graduate students in probability for research in the area of fractional calculus, anomalous diffusion, and heavy tails. Many interesting problems in this area remain open. This book will guide the motivated reader to understand the essential background needed to read and unerstand current research papers, and to gain the insights and techniques needed to begin making their own contributions to this rapidly growing field. De Gruyter studies in mathematics ;43.Fractional calculusDiffusion processesStochastic analysisAnomalous Diffusion.Fractional Calculus Model.Fractional Derivative.Fractional Diffusion Equation.Particle Jump.Probability.Random Walk.Satistical Physics.Tempered Fractional Derivative.Vector Fractional Derivative.Fractional calculus.Diffusion processes.Stochastic analysis.515/.83SK 950rvkMeerschaert Mark M.1955-53538Sikorskii Alla515174MiAaPQMiAaPQMiAaPQBOOK9910791968603321Stochastic models for fractional calculus856081UNINA