05150oam 2200553 450 991079054140332120190911100030.00-12-810050-80-12-417103-6(OCoLC)859836271(MiFhGG)GVRL8CYS(EXLCZ)99255000000112705820140424d2014 uy 0engurun|---uuuuatxtccrIntroduction to mobile robot control /Spyros G. Tzafestas, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, GreeceFirst edition.London :Elsevier,2014.1 online resource (xxiv, 691 pages) illustrations (some color)Elsevier insightsGale eBooksElsevier insightsDescription based upon print version of record.0-12-417049-8 1-299-96471-0 Includes bibliographical references.Front Cover; Introduction to Mobile Robot Control; Copyright Page; Dedication; Contents; Preface; List of acknowledged authors and collaborators; Principal symbols and acronyms; Quotations about robotics; 1 Mobile Robots: General Concepts; 1.1 Introduction; 1.2 Definition and History of Robots; 1.2.1 What Is a Robot?; 1.2.2 Robot History; 1.2.2.1 Ancient and Preindustrial Period; 1.2.2.2 Industrial and Robosapien Period; 1.3 Ground Robot Locomotion; 1.3.1 Legged Locomotion; 1.3.2 Wheeled Locomotion; 1.3.2.1 Wheel Types; 1.3.2.2 Drive Types; 1.3.2.3 WMR Maneuverability; References2 Mobile Robot Kinematics 2.1 Introduction; 2.2 Background Concepts; 2.2.1 Direct and Inverse Robot Kinematics; 2.2.2 Homogeneous Transformations; 2.2.3 Nonholonomic Constraints; 2.3 Nonholonomic Mobile Robots; 2.3.1 Unicycle; 2.3.2 Differential Drive WMR; 2.3.3 Tricycle; 2.3.4 Car-Like WMR; 2.3.5 Chain and Brockett-Integrator Models; 2.3.5.1 Unicycle WMR; 2.3.5.2 Rear-Wheel Driving Car; 2.3.6 Car-Pulling Trailer WMR; 2.4 Omnidirectional WMR Kinematic Modeling; 2.4.1 Universal Multiwheel Omnidirectional WMR; 2.4.2 Four-Wheel Omnidirectional WMR with Mecanum Wheels; References3 Mobile Robot Dynamics 3.1 Introduction; 3.2 General Robot Dynamic Modeling; 3.2.1 Newton-Euler Dynamic Model; 3.2.2 Lagrange Dynamic Model; 3.2.3 Lagrange Model of a Multilink Robot; 3.2.4 Dynamic Modeling of Nonholonomic Robots; 3.3 Differential-Drive WMR; 3.3.1 Newton-Euler Dynamic Model; 3.3.2 Lagrange Dynamic Model; 3.3.3 Dynamics of WMR with Slip; 3.4 Car-Like WMR Dynamic Model; 3.5 Three-Wheel Omnidirectional Mobile Robot; 3.6 Four Mecanum-Wheel Omnidirectional Robot; References; 4 Mobile Robot Sensors; 4.1 Introduction; 4.2 Sensor Classification and Characteristics4.2.1 Sensor Classification 4.2.2 Sensor Characteristics; 4.3 Position and Velocity Sensors; 4.3.1 Position Sensors; 4.3.2 Velocity Sensors; 4.4 Distance Sensors; 4.4.1 Sonar Sensors; 4.4.2 Laser Sensors; 4.4.3 Infrared Sensors; 4.5 Robot Vision; 4.5.1 General Issues; 4.5.2 Sensing; 4.5.2.1 Camera Calibration; 4.5.2.2 Image Acquisition; 4.5.2.3 Illumination; 4.5.2.4 Imaging Geometry; 4.5.3 Preprocessing; 4.5.4 Image Segmentation; 4.5.5 Image Description; 4.5.6 Image Recognition; 4.5.7 Image Interpretation; 4.5.8 Omnidirectional Vision; 4.6 Some Other Robotic Sensors; 4.6.1 Gyroscope4.6.2 Compass 4.6.3 Force and Tactile Sensors; 4.6.3.1 Force Sensors; 4.6.3.2 Tactile Sensors; 4.7 Global Positioning System; 4.8 Appendix: Lens and Camera Optics; References; 5 Mobile Robot Control I: The Lyapunov-Based Method; 5.1 Introduction; 5.2 Background Concepts; 5.2.1 State-Space Model; 5.2.2 Lyapunov Stability; 5.2.3 State Feedback Control; 5.2.4 Second-Order Systems; 5.3 General Robot Controllers; 5.3.1 Proportional Plus Derivative Position Control; 5.3.2 Lyapunov Stability-Based Control Design; 5.3.3 Computed Torque Control; 5.3.4 Robot Control in Cartesian Space5.3.4.1 Resolved Motion Rate ControlIntroduction to Mobile Robot Control provides a complete and concise study of modeling, control, and navigation methods for wheeled non-holonomic and omnidirectional mobile robots and manipulators. The book begins with a study of mobile robot drives and corresponding kinematic and dynamic models, and discusses the sensors used in mobile robotics. It then examines a variety of model-based, model-free, and vision-based controllers with unified proof of their stabilization and tracking performance, also addressing the problems of path, motion, and task planning, along with localizationElsevier insights.Mobile robotsAutomatic controlRoboticsHuman factorsMobile robotsAutomatic control.RoboticsHuman factors.718Tzafestas S. G.1939-60244MiFhGGMiFhGGBOOK9910790541403321Introduction to mobile robot control3722463UNINA