05928nam 22007092 450 991079034610332120151005020622.01-107-23960-51-107-23190-61-280-77519-X97866136855821-139-51800-31-139-51542-X1-139-15231-91-139-51707-41-139-51450-41-139-51893-3(CKB)2670000000206171(EBL)944751(OCoLC)796804045(SSID)ssj0000690373(PQKBManifestationID)11385634(PQKBTitleCode)TC0000690373(PQKBWorkID)10628158(PQKB)11023533(UkCbUP)CR9781139152310(MiAaPQ)EBC944751(Au-PeEL)EBL944751(CaPaEBR)ebr10578251(CaONFJC)MIL368558(PPN)261357107(EXLCZ)99267000000020617120110915d2012|||| uy| 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierAn introduction to celestial mechanics /Richard Fitzpatrick[electronic resource]Cambridge :Cambridge University Press,2012.1 online resource (x, 266 pages) digital, PDF file(s)Title from publisher's bibliographic system (viewed on 05 Oct 2015).1-107-02381-5 Includes bibliographical references and index.Cover; An Introduction to Celestial Mechanics; Title; Copyright; Contents; Preface; 1: Newtonian mechanics; 1.1 Introduction; 1.2 Newton's laws of motion; 1.3 Newton's first law of motion; 1.4 Newton's second law of motion; 1.5 Newton's third law of motion; 1.6 Nonisolated systems; 1.7 Motion in one-dimensional potential; 1.8 Simple harmonic motion; 1.9 Two-body problem; Exercises; 2: Newtonian gravity; 2.1 Introduction; 2.2 Gravitational potential; 2.3 Gravitational potential energy; 2.4 Axially symmetric mass distributions; 2.5 Potential due to a uniform sphere2.6 Potential outside a uniform spheroid2.7 Potential due to a uniform ring; Exercises; 3: Keplerian orbits; 3.1 Introduction; 3.2 Kepler's laws; 3.3 Conservation laws; 3.4 Plane polar coordinates; 3.5 Kepler's second law; 3.6 Kepler's first law; 3.7 Kepler's third law; 3.8 Orbital parameters; 3.9 Orbital energies; 3.10 Transfer orbits; 3.11 Elliptical orbits; 3.12 Orbital elements; 3.13 Planetary orbits; 3.14 Parabolic orbits; 3.15 Hyperbolic orbits; 3.16 Binary star systems; Exercises; 4: Orbits in central force fields; 4.1 Introduction; 4.2 Motion in a general central force field4.3 Motion in a nearly circular orbit4.4 Perihelion precession of planets; 4.5 Perihelion precession of Mercury; Exercises; 5: Rotating reference frames; 5.1 Introduction; 5.2 Rotating reference frames; 5.3 Centrifugal acceleration; 5.4 Coriolis force; 5.5 Rotational flattening; 5.6 Tidal elongation; 5.7 Tidal torques; 5.8 Roche radius; Exercises; 6 Lagrangian mechanics; 6.1 Introduction; 6.2 Generalized coordinates; 6.3 Generalized forces; 6.4 Lagrange's equation; 6.5 Generalized momenta; Exercises; 7: Rigid body rotation; 7.1 Introduction; 7.2 Fundamental equations7.3 Moment of inertia tensor7.4 Rotational kinetic energy; 7.5 Principal axes of rotation; 7.6 Euler's equations; 7.7 Euler angles; 7.8 Free precession of the Earth; 7.9 MacCullagh's formula; 7.10 Forced precession and nutation of the Earth; 7.11 Spin-orbit coupling; 7.12 Cassini's laws; Exercises; 8: Three-body problem; 8.1 Introduction; 8.2 Circular restricted three-body problem; 8.3 Jacobi integral; 8.4 Tisserand criterion; 8.5 Co-rotating frame; 8.6 Lagrange points; 8.7 Zero-velocity surfaces; 8.8 Stability of Lagrange points; Exercises; 9: Secular perturbation theory; 9.1 Introduction9.2 Evolution equations for a two-planet solar system9.3 Secular evolution of planetary orbits; 9.4 Secular evolution of asteroid orbits; 9.5 Secular evolution of artificial satellite orbits; Exercises; 10: Lunar motion; 10.1 Introduction; 10.2 Preliminary analysis; 10.3 Lunar equations of motion; 10.4 Unperturbed lunar motion; 10.5 Perturbed lunar motion; 10.6 Description of lunar motion; Exercises; Appendix A: Useful mathematics; A.1 Calculus; A.2 Series expansions; A.3 Trigonometric identities; A.4 Vector identities; A.5 Conservative fields; A.6 Rotational coordinate transformationsA.7 PrecessionThis accessible text on classical celestial mechanics, the principles governing the motions of bodies in the Solar System, provides a clear and concise treatment of virtually all of the major features of solar system dynamics. Building on advanced topics in classical mechanics such as rigid body rotation, Langrangian mechanics and orbital perturbation theory, this text has been written for advanced undergraduates and beginning graduate students in astronomy, physics, mathematics and related fields. Specific topics covered include Keplerian orbits, the perihelion precession of the planets, tidal interactions between the Earth, Moon and Sun, the Roche radius, the stability of Lagrange points in the three-body problem and lunar motion. More than 100 exercises allow students to gauge their understanding and a solutions manual is available to instructors. Suitable for a first course in celestial mechanics, this text is the ideal bridge to higher level treatments.Celestial mechanicsCelestial mechanics.521SCI005000bisacshFitzpatrick Richard1963-769746UkCbUPUkCbUPBOOK9910790346103321Introduction to celestial mechanics1569646UNINA