05521nam 2200685Ia 450 991078996910332120200520144314.01-280-67478-497866136517161-118-31196-51-61344-891-01-118-31197-31-118-31194-9(CKB)2670000000159967(EBL)827068(OCoLC)779616347(SSID)ssj0000612109(PQKBManifestationID)11379559(PQKBTitleCode)TC0000612109(PQKBWorkID)10666461(PQKB)10912464(MiAaPQ)EBC827068(Au-PeEL)EBL827068(CaPaEBR)ebr10538626(CaONFJC)MIL365171(PPN)166903574(EXLCZ)99267000000015996720111017d2012 uy 0engur|n|---|||||txtccrIntelligent nanomaterials[electronic resource] processes, properties, and applications /edited by Ashutosh Tiwari ... [et al.]Hoboken, NJ John Wiley & Sons ;Salem, Mass. Scrivener Pub.c20121 online resource (866 p.)Description based upon print version of record.0-470-93879-X Includes bibliographical references and index.Intelligent Nanomaterials: Processes, Properties, and Applications; Contents; Preface; PART I Inorganic Materials; 1. Synthesis, Characterization, and Self-assembly of Colloidal Quantum Dots; 1.1 Introduction; 1.2 Size-dependent Optical Properties of Quantum Dots; 1.2.1 Band Gap Energies; 1.2.2 Absorption Spectra; 1.3 Procedures for Synthesis of Colloidal Quantum Dots; 1.3.1 Synthesis of Quantum Dots in Reverse Micelles; 1.3.2 Synthesis of Quantum Dots in Aqueous Media; 1.3.3 Hot-matrix Synthesis of Quantum Dots; 1.4 Types of Semiconductor Quantum Dots; 1.4.1 Binary Quantum Dots1.4.2 Alloyed Quantum Dots1.4.3 Core/shell Quantum Dots: ""Type-I""; 1.4.4 Core/shell Quantum Dots: ""Type-II""; 1.4.5 Quantum Dot/quantum Well Nanocrystals; 1.4.6 Transition-element-doped Quantum Dots; 1.5 Surface Functionalization of Quantum Dots; 1.5.1 Self-assembly of Colloidal Quantum Dots; 1.6 Conclusions; References; 2. One-dimensional Semiconducting Metal Oxides: Synthesis, Characterization and Gas Sensors Application; 2.1 Introduction; 2.2 Synthesis of 1-D Metal Oxide; 2.2.1 Vapor Phase Growth; 2.2.2 Vapor-liquid-solid Mechanism; 2.2.3 Vapor Solid Mechanism; 2.3 Solution Phase Growth2.3.1 Template Assisted Synthesis2.3.2 Template Free Synthesis; 2.4 Gas Sensor Applications; 2.4.1 SnO2 NWs Based Gas Sensors; 2.4.2 WO3 NWs Based Gas Sensors; 2.4.3 ZnO NWs Based Gas Sensors; 2.4.4 TiO2 NWs Based Gas Sensor; 2.4.5 CuO NWs Based Gas Sensors; 2.4.6 In2O3 NWs Based Gas Sensors; 2.5 Conclusions; Acknowledgement; References; 3. Rare-earth Based Insulating Nanocrystals: Improved Luminescent Nanophosphors for Plasma Display Panels; 3.1 What is Plasma Display Panel? An Introduction and Overview; 3.2 History of Plasma Display Panel; 3.3 Working of Plasma Display Panel3.3.1 Advantages of Plasma Display Panel3.3.2 Disadvantages of Plasma Display Panel; 3.4 Nanophosphors for Plasma Display Panel; 3.4.1 Blue Nanophosphors; 3.5 Synthesis of BAM:Eu2+ Nanophosphors by Sol-gel Method; 3.5.1 Chemicals Used; 3.5.2 Methodology; 3.5.3 Characterization of Prepared Nanophosphors; 3.5.4 Results and Discussion; 3.6 Time Evolution Studies and Decay Time Determination; 3.7 Synthesis of BAM:Eu2+ Nanophosphors by Solution Combustion Method; 3.7.1 Chemicals Used; 3.7.2 Methodology; 3.7.3 Characterization of Prepared Nanophosphors; 3.7.4 Results and Discussion3.8 Green Nanophosphors3.8.1 Yttrium Aluminum Garnet Y3Al5O12:Tb3+ (YAG:Tb3+) Nanophosphors; 3.8.2 Synthesis of Y3Al5O12:Tb3+ (YAG:Tb3+) Nanophosphors by Sol-gel Method; 3.8.3 Chemicals Used; 3.8.4 Methodology; 3.8.5 Characterization of Prepared Y3Al5O12:Tb3+ (YAG:Tb3+) Nanophosphors; 3.8.6 Results and Discussion; 3.9 Terbium Doped Yttrium Ortho-borate (YBO3:Tb3+) Nanophosphors; 3.9.1 Synthesis of Terbium Doped Yttrium Ortho-borate (YBO3:Tb3+) Nanophosphors; 3.9.2 Chemicals Used; 3.9.3 Methodology; 3.9.4 Characterizations Used; 3.9.5 Result and Discussion3.10 Red Nanophosphors: Yttrium Aluminum Garnet Y3AlO12:Eu3+ (YAG:Eu3+) NanophosphorsIntelligent Nanomaterials comprehensively provides up-to-date material of this fascinating field. The last three decades have seen extraordinary advances in the generation of new materials based on both fundamental elements and composites, driven by advances in synthetic chemistry and often drawing inspiration from nature. The concept of an intelligent material envisions additional functionality built into the molecular structure, such that a desirable response occurs under defined conditions. Divided into 4 parts: Inorganic Materials; Organic Materials; Composite Materials; andNanostructured materialsSmart materialsNanostructured materials.Smart materials.620.1/15TEC021000bisacshTiwari Ashutosh1978-738472MiAaPQMiAaPQMiAaPQBOOK9910789969103321Intelligent nanomaterials3836554UNINA