00981nam a2200265 i 450099100131416970753620020507114301.0970308s1970 it ||| | ita b10203333-39ule_instLE00645691ExLDip.to Fisicaita510(091)511Della Francesca, Piero217393Trattato d'abaco :dal codice ashburnhamiano 280 (359-291) della Biblioteca Medicea Laurenziana di Firenze /Piero Della Francesca ; a cura di Gino ArrighiPisa :Domus Galilaeana,1970270 p. :ill. ;25 cm.CalculusArrighi, Gino.b1020333321-09-0627-06-02991001314169707536LE006 5(06+091) DEL12006000016810le006-E0.00-l- 00000.i1025123627-06-02Trattato d'abaco150136UNISALENTOle00601-01-97ma -itait 0102655nam 2200589 450 991078889650332120180731045130.01-4704-0660-8(CKB)3360000000464437(EBL)3113482(SSID)ssj0000973348(PQKBManifestationID)11537970(PQKBTitleCode)TC0000973348(PQKBWorkID)10959875(PQKB)11422017(MiAaPQ)EBC3113482(RPAM)1843216(PPN)195411366(EXLCZ)99336000000046443719810911h19811981 uy| 0engur|n|---|||||txtccrContinuous cohomology of the Lie algebra of vector fields /Toru TsujishitaProvidence, Rhode Island :American Mathematical Society,[1981]©19811 online resource (160 p.)Memoirs of the American Mathematical Society,0065-9266 ;number 253Description based upon print version of record.0-8218-2253-5 Includes bibliographical references.""Section 3. Lie algebra cohomology""""3.1. Definitions""; ""3.2. Differential graded modules with Lie algebra actions""; ""3.3. Cohomology of L[sub(0)]""; ""3.4. Weil algebras""; ""Section 4. Frame bundles of manifolds""; ""4.1. Group of formal diffeomorphisms""; ""4.2. Frame bundles""; ""Section 5. Statements of the main results""; ""5.1. The fundamental theorem""; ""5.2. Topological interpretation of H(L[sub(M)], F[sub(M)])""; ""5.3. Compact support coefficients""; ""5.4. Distribution coefficients""; ""5.5. The case of L[sup(c)][sub(M)]""; ""Section 6. Diagonal cohomologies""""6.1. Guillemin-Losik Theorem""""6.2. A strong form of Guillemin-Losik Theorem""; ""6.3. Losik Theorem""; ""6.4. Distribution coefficients""; ""Section 7. Haefliger Theorem""; ""Section 8. Proof of Theorem I""; ""Section 9. Proof of Theorem II""; ""Section 10. Proof of Theorem(1.3.1)""; ""References""Memoirs of the American Mathematical Society ;no. 253.Vector fieldsLie algebrasHomology theoryVector fields.Lie algebras.Homology theory.510 s512/.55Tsujishita Tōru1950-1545077MiAaPQMiAaPQMiAaPQBOOK9910788896503321Continuous cohomology of the Lie algebra of vector fields3799756UNINA