01786cam2 22003251 450 SOBE0006040420180921084323.0uice e.s- s.o- (ace (3) 1764 (R)20180905d1764 |||||ita|0103 bafreNL<<7: >>Tome septieme, contenant le droit ecclesiastique, l'histoire de ce droit, le gouvernement de l'Eglise, le gouvernement des princes par rapport aux affaires, aux personnes & aux biens ecclésiastiques; les droits des souverains ..A Amsterdamchez Arkstée & Merkus, Libraires1764xxviii, 785, [3] p.Fregio xilografico sul frontespizioSegnatura: [a]⁴ b-c⁴ d² A-5F⁴ 5G²Fregi xilografici001SOBE000603932001 <<La >>science du gouvernement, par M. de Real, grand sénéchal de Forcalquier, tome premier [-huitieme] ... Ouvrage de morale, de droit et de politique; qui contient les principes du commandement & de l'obéissance ...7AmsterdamSOBA00017339Réal de Curban, GaspardSOBA00017677070748727*Arkstée, *Hans Kasper & *Merkus, *HendrickSOBA00017680650ITBEM20180921RICABEMBEMVII.E00522SOBE00060404M 103 Monografia antica SBNMPagliara|RVII.E000117NOPR00522PagliaraRDonotcalvanoBEMBEM20180905114527.020180905114612.0tcalvanoTome septieme, contenant le droit ecclesiastique, l'histoire de ce droit, le gouvernement de l'Eglise, le gouvernement des princes par rapport aux affaires, aux personnes & aux biens ecclésiastiques; les droits des souverains .1728029UNISOB02415nam 2200565 450 991078889450332120180731045352.01-4704-0637-3(CKB)3360000000464417(EBL)3113547(SSID)ssj0000910355(PQKBManifestationID)11486551(PQKBTitleCode)TC0000910355(PQKBWorkID)10932361(PQKB)10506373(MiAaPQ)EBC3113547(RPAM)4662765(PPN)195411161(EXLCZ)99336000000046441719800512h19801980 uy| 0engur|n|---|||||txtccrAll compact orientable three dimensional manifolds admit total foliations /Detlef HardorpProvidence, Rhode Island :American Mathematical Society,[1980]©19801 online resource (84 p.)Memoirs of the American Mathematical Society,0065-9266 ;number 233Volume 26 ... (first of two numbers).""A slightly revised version of the author's Ph.D thesis (Princeton, 1978)."0-8218-2233-0 Bibliography: pages 74.""Table of Contents""; ""Chapter 1 : Total foliations for n dimensional manifolds""; ""Chapter 2 :""; ""Part 1 : Examples of total foliations of the two dimensional torus (T[sup(2)])""; ""Part 2 : Cubical decompositions and triangulations of three manifolds""; ""Chapter 3 : Some simple examples of total foliations for T[sup(3)], S[sup(2)] x S[sup(1)], and S[sup(3)]""; ""Chapter 4 : Constructing total foliations for all oriented circle bundles over two manifolds""; ""Part 1 : The trivial bundle""; ""Part 2 : A circle of foliations in the unit tangent space of a hyperbolic two manifold""Memoirs of the American Mathematical Society ;no. 233.Foliations (Mathematics)Three-manifolds (Topology)Foliations (Mathematics)Three-manifolds (Topology)510 s514/.72Hardorp Detlef1545069MiAaPQMiAaPQMiAaPQBOOK9910788894503321All compact orientable three dimensional manifolds admit total foliations3799736UNINA