02747nam 2200613 450 991078888370332120170918221010.01-4704-0783-3(CKB)3360000000464551(EBL)3113997(SSID)ssj0000888812(PQKBManifestationID)11530340(PQKBTitleCode)TC0000888812(PQKBWorkID)10865786(PQKB)11351936(MiAaPQ)EBC3113997(RPAM)3366250(PPN)195412508(EXLCZ)99336000000046455120140908h19871987 uy 0engur|n|---|||||txtccrCategories of highest weight modules applications to classical Hermitian symmetric pairs /Thomas J. Enright and Brad SheltonProvidence, Rhode Island, United States :American Mathematical Society,1987.©19871 online resource (102 p.)Memoirs of the American Mathematical Society,0065-9266 ;Volume 67, Number 367"May 1987, Volume 67, Number 367 (end of volume)"--Cover.0-8218-2429-5 Includes bibliographical references.""Table of Contents""; ""1. Introduction and summary of results""; ""Part I: Categories of Highest Weight Modules""; ""2. Notation""; ""3. Preliminary results""; ""4. Reduction of singularities""; ""5. The Zuckerman derived functors""; ""6. An equivalence of categories""; ""7. A second equivalence of categories""; ""Part II: Highest Weight Modules for Hermitian Symmetric Pairs""; ""8. Statement of the Main Results""; ""9. Additional notation and preliminary results""; ""10. Wall shifting""; ""11. Induction from lower rank""; ""12. Proof of Theorem 8.4""; ""13. Proof of Theorem 8.5""""14. Projective resolutions and Ext""""15. Kazhdan-Lusztig polynomials""; ""16. Decompositions of U(u[sup(â€?)])-free self-dual g-modules""; ""Bibliography""Memoirs of the American Mathematical Society ;Volume 67, Number 367.Modular representations of groupsSemisimple Lie groupsVerma modulesKazhdan-Lusztig polynomialsModular representations of groups.Semisimple Lie groups.Verma modules.Kazhdan-Lusztig polynomials.512/.2Enright Thomas J.57380Shelton Brad1958-MiAaPQMiAaPQMiAaPQBOOK9910788883703321Categories of highest weight modules3696194UNINA