04428nam 2200613 450 991078888100332120170816143302.01-4704-0750-7(CKB)3360000000464520(EBL)3113964(SSID)ssj0000888846(PQKBManifestationID)11456888(PQKBTitleCode)TC0000888846(PQKBWorkID)10865360(PQKB)10765467(MiAaPQ)EBC3113964(RPAM)498579(PPN)195412184(EXLCZ)99336000000046452020140909h19851985 uy 0engur|n|---|||||txtccrComputing the homology of the lambda algebra /Martin C. TangoraProvidence, Rhode Island :American Mathematical Society,1985.©19851 online resource (174 p.)Memoirs of the American Mathematical Society,0065-9266 ;Number 337"November 1985, Volume 58, Number 337 (third of four numbers)."0-8218-2338-8 Includes bibliographical references.""Table of Contents""; ""Chapter 1: Introduction""; ""Chapter 2: The lambda algebra""; ""2.1. The defining structure of the lambda algebra""; ""2.2. Generating tables of relations and differentials""; ""2.3. Digression: the Adem relations in the Steenrod algebra""; ""2.4. Ordering""; ""2.5. Corollaries to the structure formulas""; ""2.6. Tri-grading when p is odd""; ""2.7. The endomorphism Î?""; ""2.8. Cutting the work in half: odd endings""; ""2.9. Remarks on the image of J and vanishing lines""; ""2.10. The ""unstable"" algebras and the EHP sequence""""2.11. Some comments on the search for differentials""""2.12. The size of the lambda algebra""; ""Table 2.1: Actual counts, p=2, odd-ending monomials""; ""2.13. Euler characteristic check""; ""Chapter 3: The algorithms and the Curtis table""; ""3.1. Terminology""; ""3.2. The tables do not include certain towers""; ""3.3. Preliminary algorithm""; ""3.4. Obvious tags and invisible listings""; ""3.5. The LTO (leading-term-only) algorithm""; ""3.6. Some perverse examples""; ""3.7. Finiteness""; ""3.8. Correctness""; ""3.9. Shortcuts""; ""3 9 1. No small target""; ""3 9.2. Truncation""""3 9.3. Cycle initials""""3 9.4. Visible products ""; ""3.9.5. A certain pattern for p=2""; ""3.9.6. A useful pattern for p=2 or p=3""; ""3.9.7. Verticals, p=2""; ""3.9.8. Some patterns for p=3""; ""3.9.9. Verticals, p=3""; ""3.9.10. Product with λl, p=3""; ""3.10 Using extraneous information""; ""Chapter 4: Implementation and experience""; ""4.1. The SNOBOL language""; ""4.2. Stop and restart; output""; ""4.3. Choice of algorithm""; ""4.4. Time and storage constraints""; ""4.5. Data representation""; ""4.6. The sample program""; ""4.7. Execution profiles""""4.8. Growth rate of the calculation""""Table 4.1. CPU time for each t, p=2""; ""Table 4.2. CPU time for each t, p=3""; ""4.9. Bad cases""; ""4.10. Recent developments""; ""Figure 4.1: Snobol program, p=2""; ""Chapter 5: Related programs""; ""5.1. The lambda algebra""; ""5.2. Table-processing programs""; ""5.3. Various programs for Curtis tables""; ""5.4. Execution profiles""; ""5.5. Product structure""; ""Chapter 6: The tables""; ""6.1. Tables 1 and 2: Curtis tables for p=2""; ""6.2. Tables 3 and 4: Curtis tables for p=3""; ""6.3. Tables 5 and 6: Curtis tables for p=3, lambdas only""""Table 1: p=2, stable""""Table 2: p=2, Curtis table""; ""Table 3: p=3, stable""; ""Table 4: p=3, Curtis table""; ""Table 5: p=3 lambdas only, stable""; ""Table 6: p=3 lambdas only, Curtis table""; ""Bibliography""Memoirs of the American Mathematical Society ;Number 337.Lambda algebraData processingAdams spectral sequencesData processingHomotopy groupsData processingLambda algebraData processing.Adams spectral sequencesData processing.Homotopy groupsData processing.514Tangora Martin C.41821MiAaPQMiAaPQMiAaPQBOOK9910788881003321Computing the homology of the lambda algebra3696167UNINA