03645nam 2200601 450 991078885410332120180613001302.01-4704-0532-6(CKB)3360000000465110(EBL)3114140(SSID)ssj0000888809(PQKBManifestationID)11530339(PQKBTitleCode)TC0000888809(PQKBWorkID)10876405(PQKB)11429616(MiAaPQ)EBC3114140(RPAM)15511226(PPN)195418158(EXLCZ)99336000000046511020150417h20092009 uy 0engur|n|---|||||txtccrCanonical Wick rotations in 3-dimensional gravity /Riccardo Benedetti, Francesco BonsanteProvidence, Rhode Island :American Mathematical Society,2009.©20091 online resource (181 p.)Memoirs of the American Mathematical Society,0065-9266 ;Volume 198, Number 926"Volume 198, Number 926 (third of 6 numbers)."0-8218-4281-1 Includes bibliographical references and index.""2.1. Generalities on (X,G)-structures""""2.2. Minkowski space""; ""2.3. De Sitter space""; ""2.4. Anti de Sitter space""; ""2.5. Complex projective structures on surfaces""; ""Chapter 3. Flat globally hyperbolic spacetimes""; ""3.1. Globally hyperbolic spacetimes""; ""3.2. Cosmological time""; ""3.3. Regular domains""; ""3.4. Measured geodesic laminations on straight convex sets""; ""3.5. From measured geodesic laminations towards regular domains""; ""3.6. From regular domains towards measured geodesic laminations""; ""3.7. Initial singularities and R-trees""""3.8. Equivariant constructions""""Chapter 4. Flat Lorentzian vs hyperbolic geometry""; ""4.1. Hyperbolic bending cocycles""; ""4.2. The Wick rotation""; ""4.3. On the geometry of M[sub(λ)]""; ""4.4. Equivariant theory""; ""Chapter 5. Flat vs de Sitter Lorentzian geometry""; ""5.1. Standard de Sitter spacetimes""; ""5.2. The rescaling""; ""5.3. Equivariant theory""; ""Chapter 6. Flat vs AdS Lorentzian geometry""; ""6.1. Bending in AdS space""; ""6.2. Canonical AdS rescaling""; ""6.3. Maximal globally hyperbolic AdS spacetimes""; ""6.4. Classification via AdS rescaling""""6.5. Equivariant rescaling""""6.6. AdS rescaling and generalized earthquakes""; ""6.7. T-symmetry""; ""6.8. Examples""; ""Chapter 7. QD-spacetimes""; ""7.1. Quadratic differentials""; ""7.2. Flat QD-spacetimes""; ""7.3. QD Wick rotation-rescaling theory""; ""Chapter 8. Complements""; ""8.1. Moving along a ray of laminations""; ""8.2. More compact Cauchy surfaces""; ""8.3. Including particles""; ""8.4. Open questions""; ""Bibliography""; ""Index""; ""A""; ""B""; ""C""; ""D""; ""E""; ""F""; ""G""; ""H""; ""I""; ""K""; ""L""; ""M""; ""P""; ""Q""; ""R""; ""S""; ""T""; ""U""; ""V""; ""W""Memoirs of the American Mathematical Society ;Volume 198, Number 926.Three-manifolds (Topology)Global differential geometryLow-dimensional topologyThree-manifolds (Topology)Global differential geometry.Low-dimensional topology.514.3Benedetti R.1085385Bonsante FrancescoMiAaPQMiAaPQMiAaPQBOOK9910788854103321Canonical Wick rotations in 3-dimensional gravity3836155UNINA