02934nam 2200589 450 991078884230332120170918210214.01-4704-0295-5(CKB)3360000000464888(EBL)3114558(SSID)ssj0000973889(PQKBManifestationID)11516458(PQKBTitleCode)TC0000973889(PQKBWorkID)10985121(PQKB)10104185(MiAaPQ)EBC3114558(RPAM)12102320(PPN)195415892(EXLCZ)99336000000046488820000711h20002000 uy| 0engur|n|---|||||txtccrThe second Chinburg conjecture for quaternion fields /Jeff Hooper, Victor Snaith, Minh van TranProvidence, Rhode Island :American Mathematical Society,[2000]©20001 online resource (146 p.)Memoirs of the American Mathematical Society,0065-9266 ;number 704Description based upon print version of record.0-8218-2164-4 Includes bibliographical references and index.""Contents""; ""Introduction""; ""Chapter 1. Class-groups of group-rings""; ""1. Hom Descriptions""; ""2. The class-group of Z[Q[sub(8)]]""; ""3. The second Chinburg conjecture""; ""Chapter 2. The evaluation of [X]""; ""1. A Hom-description representative of [X]""; ""2. Kim's Examples""; ""Chapter 3. Quaternion fields over Q[sub(2)]""; ""1. Galois actions""; ""2. Fundamental 2-extensions""; ""3. The fundamental 2-extension in Case A""; ""4. The fundamental 2-extension in Case B""; ""5. The fundamental 2-extension in Case C""; ""Chapter 4. The Invariant in Cases A, B and C""""1. The strategy of the calculation""""2. Evaluating [Ker(k')] in Case A""; ""3. Evaluating [Ker(k')] in Case B""; ""4. Evaluating [Ker(k')] in Case C""; ""Chapter 5. The evaluation of [M]""; ""1. The class [M] in Case A""; ""2. The class [M] in Case B""; ""3. The class [M] in Case C""; ""Chapter 6. The conjecture in Cases A, B and C""; ""1. Evaluation of [X] in Cases A, B and C""; ""2. The proof in Cases A, B and C""; ""Chapter 7. Epilogue""; ""1. Related and Subsequent Results""; ""Bibliography""; ""Index""Memoirs of the American Mathematical Society ;no. 704.Galois modules (Algebra)QuaternionsGalois modules (Algebra)Quaternions.510 s512/.74Hooper Jeff1968-1566839Snaith Victor P(Victor Percy),1944-Tran Minh Van1963-MiAaPQMiAaPQMiAaPQBOOK9910788842303321The second Chinburg conjecture for quaternion fields3837753UNINA